Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov-Dec;39(6):635-49.

Shoulder kinematics and kinetics during two speeds of wheelchair propulsion

Affiliations
  • PMID: 17943666

Shoulder kinematics and kinetics during two speeds of wheelchair propulsion

Alicia M Koontz et al. J Rehabil Res Dev. 2002 Nov-Dec.

Abstract

The primary objective of this study was to examine the kinematics and kinetics of the shoulder during wheelchair propulsion at a slow and moderate speed. Twenty-seven individuals with paraplegia propelled their wheelchairs at speeds of 0.9 m/s and 1.8 m/s while a motion analysis system captured movements of their upper limbs and SMART(Wheel)s simultaneously recorded their pushrim kinetics. Intraclass R correlation and Cronbach's coefficient alpha statistics revealed that all shoulder parameters were stable and consistent between strokes and speeds. The shoulder exhibited a greater range of motion, and forces and moments at the shoulder were 1.2 to 2.0 times greater (p < 0.05) during the 1.8 m/s speed trial. Peak posterior forces occurred near the end of the propulsion phase, and at the same time, the shoulder was maximally flexed and minimally abducted (p > 0.1). Shoulder positioning and the associated peak shoulder loads during propulsion may be important indicators for identifying manual wheelchair users at risk for developing shoulder pain and injury.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources