Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Nov;274(22):5790-8.
doi: 10.1111/j.1742-4658.2007.06099.x. Epub 2007 Oct 17.

Osmotic stress sensing and signaling in fishes

Affiliations
Free article
Review

Osmotic stress sensing and signaling in fishes

Diego F Fiol et al. FEBS J. 2007 Nov.
Free article

Abstract

In their aqueous habitats, fish are exposed to a wide range of osmotic conditions and differ in their abilities to respond adaptively to these variations in salinity. Fish species that inhabit environments characterized by significant salinity fluctuation (intertidal zone, estuaries, salt lakes, etc.) are euryhaline and able to adapt to osmotic stress. Adaptive and acclimatory responses of fish to salinity stress are based on efficient mechanisms of osmosensing and osmotic stress signaling. Multiple osmosensors, including calcium sensing receptor likely act in concert to convey information about osmolality changes to downstream signaling and effector mechanisms. The osmosensory signal transduction network in fishes is complex and includes calcium, mitogen-activated protein kinase, 14-3-3 and macromolecular damage activated signaling pathways. This network controls, among other targets, osmosensitive transcription factors such as tonicity response element binding protein and osmotic stress transcription factor 1, which, in turn, regulate the expression of genes involved in osmotic stress acclimation. In addition to intracellular signaling mechanisms, the systemic response to osmotic stress in euryhaline fish is coordinated via hormone- and paracrine factor-mediated extracellular signaling. Overall, current insight into osmosensing and osmotic stress-induced signal transduction in fishes is limited. However, euryhaline fish species represent excellent models for answering critical emerging questions in this field and for elucidating the underlying molecular mechanisms of osmosensory signal transduction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources