Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov 10;81(21-22):1549-54.
doi: 10.1016/j.lfs.2007.09.014. Epub 2007 Oct 2.

cGMP-dependent and -independent angiogenesis-related properties of nitric oxide

Affiliations

cGMP-dependent and -independent angiogenesis-related properties of nitric oxide

Anastasia Pyriochou et al. Life Sci. .

Abstract

Nitric oxide exerts a stimulatory role during postnatal angiogenesis. Although soluble guanylyl cyclase (sGC) mediates many of the effects of nitric oxide (NO) in the vascular system, the contribution of cGMP-dependent vs cGMP-independent pathways in NO-induced angiogenesis remains unclear. Herein, we determined the effects of a NO donor (sodium nitroprusside; SNP) and a NO-independent sGC activator (BAY 41-2272) in the growth and migration of rat aortic endothelial cells (RAEC). RAEC lack enzymatically active sGC as suggested by their inability to accumulate cGMP upon exposure to SNP. However, treatment of RAEC with SNP promoted a modest increase in their proliferation and migration that was dependent on extracellular signal regulated kinase1/2 activation. Moreover, when RAEC were exposed to vascular endothelial growth factor we observed an increase in migration that was inhibited by NO synthase, but not sGC, inhibition. Infection of cells with adenoviruses containing sGC greatly increased the efficacy of SNP as a mitogenic and migratory stimulus. We conclude that NO is capable of stimulating EC proliferation and mobility in the absence of sGC; however, increased intracellular levels of cGMP following sGC activation greatly amplify the angiogenic potential of NO.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources