Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jan 25;283(4):2185-91.
doi: 10.1074/jbc.M705480200. Epub 2007 Oct 18.

Activation of the silkworm cytokine by bacterial and fungal cell wall components via a reactive oxygen species-triggered mechanism

Affiliations
Free article

Activation of the silkworm cytokine by bacterial and fungal cell wall components via a reactive oxygen species-triggered mechanism

Kenichi Ishii et al. J Biol Chem. .
Free article

Abstract

The insect cytokine paralytic peptide (PP) induces muscle contraction in silkworm larvae. Here we demonstrate that bacterial and fungal cell wall components peptidoglycan and glucan stimulate muscle contraction via activation of PP in the hemolymph. Anti-PP antibody suppressed the muscle contraction induced by PP, peptidoglycan, or glucan. The contraction was also inhibited by free radical scavengers and serine protease inhibitors. Moreover, injecting live silkworms with peptidoglycan or glucan generated the active form of PP. The active form of PP was also produced in vitro when peptidoglycan or glucan was incubated with hemolymph containing the PP precursor. Generation of the active form of PP was suppressed by free radical scavengers and serine protease inhibitors. Furthermore, PP activation in isolated hemolymph was inhibited by potassium cyanide, suggesting that cellular activity is involved. Stimulation by peptidoglycan promoted the generation of reactive oxygen species by silkworm hemocytes. The addition of either the active form of PP or anti-PP antibody to Staphylococcus aureus injected into silkworm larvae delayed or enhanced, respectively, the killing effect of S. aureus, suggesting that activated PP contributes to host resistance to infectious pathogens. These findings suggest that immunologic stimulants such as peptidoglycan or glucan induce reactive oxygen species production from larval hemocytes, followed by the activation of serine protease, which mediates the PP processing reaction and leads to defensive responses.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources