Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1991 Dec;110(6):997-1003.
doi: 10.1093/oxfordjournals.jbchem.a123702.

1H-NMR study on the structure of lysozyme from guinea hen egg white

Affiliations
Free article
Comparative Study

1H-NMR study on the structure of lysozyme from guinea hen egg white

T Fukamizo et al. J Biochem. 1991 Dec.
Free article

Abstract

The structure of lysozyme from guinea hen egg white (GEWL), which differs from hen egg white lysozyme (HEWL) by ten amino acid substitutions, was investigated by nuclear magnetic resonance (NMR) spectroscopy. GEWL and HEWL were very similar to each other in their tertiary structure as judged from the profile of 1H-NMR spectra, pH titration, and an N-acetylglucosamine trisaccharide [(GlcNAc)3 binding experiment. However, we have noticed several characteristics which distinguish GEWL from HEWL. The signal of Trp 108 indole N1H of GEWL was shifted upfield by about 0.3 ppm when compared with that of HEWL, and its hydrogen exchange was faster than that of HEWL. The pKa values of Glu 35 estimated from the pH titration curve of Trp 108 indole N1H were different between GEWL and HEWL. From a careful examination of spectral changes caused by (GlcNAc)3 binding, the changes in the chemical shift values of Trp 28 C5H and Asn 59 alpha CH of GEWL were found to be slightly larger than those of HEWL. Ile 55 of HEWL is replaced by valine in GEWL. Such a replacement may affect the neighboring hydrogen bonding between the main chain C = O of Leu 56 and Trp 108 indole N1H, resulting in a change in the microenvironment of the substrate-binding site near Trp 108.

PubMed Disclaimer

Similar articles

Publication types