Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Apr 1;103(5):1394-404.
doi: 10.1002/jcb.21528.

Differential apoptotic effect of wogonin and nor-wogonin via stimulation of ROS production in human leukemia cells

Affiliations

Differential apoptotic effect of wogonin and nor-wogonin via stimulation of ROS production in human leukemia cells

Jyh-Ming Chow et al. J Cell Biochem. .

Abstract

We investigate the roles of methoxyl (OCH(3)) and hydroxyl (OH) substitutions at C8 of flavonoids on their apoptosis-inducing activities. Wogonin (Wog) and nor-wogonin (N-Wog) are structurally related flavonoids, and respectively contain an OH and OCH(3) at C8. In leukemia HL-60 cells, N-Wog exhibited more-potent cytotoxicity than Wog according to the MTT and LDH release assays, and the IC(50) values of Wog and N-Wog in HL-60 cells were 67.5 +/- 2.1 and 21.7 +/- 1.5 microM, respectively. Apoptotic characteristics including DNA ladders, apoptotic bodies, and hypodiploid cells accompanied by the induction of caspase 3 protein processing appeared in Wog- and N-Wog-treated HL-60 cells. Interestingly, an increase in intracellular peroxide production was detected in N-Wog- but not Wog-treated HL-60 cells by the DCHF-DA assay, and the reduction of intracellular peroxide by catalase (CAT) induced by N-Wog significantly reduced the N-Wog- but not the Wog-induced cytotoxic effect according to the MTT assay in accordance with the blocking of DNA ladder formation and caspase 3 and PARP protein processing elicited by N-Wog. We further analyzed the effect of six structurally related compounds, including 5-OH, 7-OH, 5,7-diOH, 5,7-diOCH(3), 7,8-diOCH(3), and 7-OCH(3)-8-OH flavones, on apoptosis induction in HL-60 cells. Results suggested that OH at C5 and C7 is essential for both the apoptosis-inducing activity of flavonoids, and OH at C8 may contribute to apoptosis induction ability. Evidence to support a distinct structure-activity relationship in apoptosis induction of flavonoids is provided for the first time in this study.

PubMed Disclaimer

Publication types

LinkOut - more resources