Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008;187(2):103-12.
doi: 10.1159/000110079. Epub 2007 Oct 23.

Dentin sialophosphoprotein-promoted mineralization and expression of odontogenic genes in adipose-derived stromal cells

Affiliations

Dentin sialophosphoprotein-promoted mineralization and expression of odontogenic genes in adipose-derived stromal cells

Ling Wu et al. Cells Tissues Organs. 2008.

Abstract

Dentin sialophosphoprotein (DSPP) is an extracellular matrix, typically dentin- and bone-specific gene, which plays an important role in dentin mineralization and tooth development. Adipose-derived stromal cells (ADSCs) are considered to contain a group of pluripotent mesenchymal stem cells which are capable of mineralization either in vitro or in vivo. In the present study, we hypothesized that overexpression of DSPP would promote mineralization in ADSCs. Our results showed that infection of DSPP-expressing adenovirus (Ad-DSPP) enhanced expression of genes related to mineralization, such as Cbfa1,Osx,BSP, OCN and DMP1 in ADSCs. Alkaline phosphatase activity was also confirmed in Ad-DSPP-infected ADSCs by cytochemistry and alkaline phosphatase activity assay. Mineralization assay indicated that Ad-DSPP-infected ADSCs were able to form mineralized nodules. Another finding in this study is that early odontogenic marker genes such as Msx1, Msx2, Lhx7 and Pax9 were expressed in DSPP-overexpressed ADSCs. Thus, our results suggested that overexpression of DSPP promoted mineralization of ADSCs, and together with the expression of early odontogenic marker genes, implied that these cells may differentiate into functional odontoblast-like cells.

PubMed Disclaimer

Publication types

MeSH terms