Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Nov;3(11):623-30.
doi: 10.1038/ncpneph0638.

Mechanisms of disease: WNK-ing at the mechanism of salt-sensitive hypertension

Affiliations
Review

Mechanisms of disease: WNK-ing at the mechanism of salt-sensitive hypertension

Chou-Long Huang et al. Nat Clin Pract Nephrol. 2007 Nov.

Abstract

Potassium deficiency is associated with an increased prevalence of hypertension. Increasing potassium intake lowers blood pressure via an unknown mechanism. WNK (with no lysine) kinases are a novel family of large serine/threonine protein kinases. A large deletion from the first intron of the WNK1 gene results in increased levels of expression of WNK1 and causes Gordon's syndrome, of which hypertension and hyperkalemia are features. WNK1 activates the Na(+)/Cl(-) cotransporter NCC and the epithelial Na(+) channel ENaC, and inhibits the renal K(+) channel ROMK. Enhanced Na(+) reabsorption and inhibition of K(+) secretion resulting from increased WNK1 expression probably contribute to hypertension and hyperkalemia in Gordon's syndrome. Here, we review the role of dietary K(+) deficiency in the pathogenesis of salt-sensitive hypertension and summarize recent findings indicating that WNK1 might mediate renal Na(+) retention and hypertension in K(+) deficiency.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances