Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jan;99(1):208-19.
doi: 10.1152/jn.00971.2007. Epub 2007 Oct 24.

Synaptic inputs to granule cells of the dorsal cochlear nucleus

Affiliations
Free article

Synaptic inputs to granule cells of the dorsal cochlear nucleus

Veeramuthu Balakrishnan et al. J Neurophysiol. 2008 Jan.
Free article

Abstract

The mammalian dorsal cochlear nucleus (DCN) integrates auditory nerve input with nonauditory signals via a cerebellar-like granule cell circuit. Although granule cells carry nonauditory information to the DCN, almost nothing is known about their physiology. Here we describe electrophysiological features of synaptic inputs to granule cells in the DCN by in vitro patch-clamp recordings from P12 to P22 rats. Granule cells ranged from 6 to 8 microm in cell body diameter and had high-input resistance. Excitatory postsynaptic currents consisted of both AMPA receptor-mediated and N-methyl-D-aspartate receptor-mediated currents. Synaptically evoked excitatory postsynaptic currents ranged from -25 to -140 pA with fast decay time constants. Synaptic stimulation evoked both short- and long-latency synaptic responses that summated to spike threshold, indicating the presence of a polysynaptic excitatory pathway in the granule cell circuit. Synaptically evoked inhibitory postsynaptic currents in Cl(-)-loaded cells ranged from -30 to -1,021 pA and were mediated by glycine and, to a lesser extent, GABA(A) receptors. Unlike cerebellar granule cells, DCN granule cells lacked tonic inhibition by GABA. The glycinergic synaptic conductance was mediated by heteromeric glycine receptors and was far stronger than the glutamatergic conductance, suggesting that glycinergic neurons may act to gate nonauditory signals in the DCN.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources