Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov 20;46(46):13407-14.
doi: 10.1021/bi701599e. Epub 2007 Oct 26.

Characterization of Helicobacter pylori gamma-glutamyltranspeptidase reveals the molecular basis for substrate specificity and a critical role for the tyrosine 433-containing loop in catalysis

Affiliations

Characterization of Helicobacter pylori gamma-glutamyltranspeptidase reveals the molecular basis for substrate specificity and a critical role for the tyrosine 433-containing loop in catalysis

Amy L Morrow et al. Biochemistry. .

Abstract

Helicobacter pylori gamma-glutamyltranspeptidase (HpGT) is a member of the N-terminal nucleophile hydrolase superfamily. It is translated as an inactive 60 kDa polypeptide precursor that undergoes intramolecular autocatalytic cleavage to generate a fully active heterodimer composed of a 40 kDa and a 20 kDa subunit. The resultant N-terminus, Thr 380, has been shown to be the catalytic nucleophile in both autoprocessing and enzymatic reactions. Once processed, HpGT catalyzes the hydrolysis of the gamma-glutamyl bond in glutathione and its conjugates. To facilitate the determination of physiologically relevant substrates for the enzyme, crystal structures of HpGT in complex with glutamate (1.6 A, Rfactor = 16.7%, Rfree = 19.0%) and an inactive HpGT mutant, T380A, in complex with S-(nitrobenzyl)glutathione (1.55 A, Rfactor = 18.7%, Rfree = 21.8%) have been determined. Residues that comprise the gamma-glutamyl binding site are primarily located in the 20 kDa subunit and make numerous hydrogen bonds with the alpha-amino and alpha-carboxylate groups of the substrate. In contrast, a single hydrogen bond occurs between the T380A mutant and the remainder of the ligand. Lack of specific coordination beyond the gamma-glutamyl moiety may account for the substrate binding permissiveness of the enzyme. Structural analysis was combined with site-directed mutagenesis of residues involved in maintaining the conformation of a loop region that covers the gamma-glutamyl binding site. Results provide evidence that access to this buried site may occur through conformational changes in the Tyr 433-containing loop, as disruption of the intricate hydrogen-bond network responsible for optimal placement of Tyr 433 significantly diminishes catalytic activity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources