Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov;134(22):4107-17.
doi: 10.1242/dev.007310.

Arabidopsis GLAUCE promotes fertilization-independent endosperm development and expression of paternally inherited alleles

Affiliations

Arabidopsis GLAUCE promotes fertilization-independent endosperm development and expression of paternally inherited alleles

Quy A Ngo et al. Development. 2007 Nov.

Abstract

Early seed development of sexually reproducing plants requires both maternal and paternal genomes but is prominently maternally influenced. A novel gametophytic maternal-effect mutant defective in early embryo and endosperm development, glauce (glc), has been isolated from a population of Arabidopsis Ds transposon insertion lines. The glc mutation results from a deletion at the Ds insertion site, and the molecular identity of GLC is not known. glc embryos can develop up to the globular stage in the absence of endosperm and glc central cells appear to be unfertilized. glc suppresses autonomous endosperm development observed in the fertilization-independent seed (fis) class mutants. glc is also epistatic to mea, one of the fis class mutants, in fertilized seeds, and is essential for the biparental embryonic expression of PHE1, a repressed downstream target of MEA. In addition, maternal GLC function is required for the paternal embryonic expression of the ribosome protein gene RPS5a and the AMP deaminase gene FAC1, both of which are essential for early embryo and endosperm development. These results indicate that factors derived from the female gametophyte activate a subset of the paternal genome of fertilized seeds.

PubMed Disclaimer

Similar articles

Cited by

Publication types