Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov;51(11):1398-405.
doi: 10.1002/mnfr.200700150.

In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria

Affiliations

In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria

Robert E Ward et al. Mol Nutr Food Res. 2007 Nov.

Abstract

This study was conducted to investigate the catabolism and fermentation of human milk oligosaccharides (HMO) by individual strains of bifidobacteria. Oligosaccharides were isolated from a pooled sample of human milk using solid-phase extraction, and then added to a growth medium as the sole source of fermentable carbohydrate. Of five strains of bifidobacteria tested (Bifidobacterium longum biovar infantis, Bifidobacterium bifidum, Bifidobacterium longum biovar longum, Bifidobacterium breve, and Bifidobacterium adolescentis), B. longum bv. infantis grew better, achieving triple the cell density then the other strains. B. bifidum did not reach a high cell density, yet generated free sialic acid, fucose and N-acetylglucosamine in the media, suggesting some capacity for HMO degradation. Thin layer chromatography profiles of spent fermentation broth suggests substantial degradation of oligosaccharides by B. longum bv. infantis, moderate degradation by B. bifidum and little degradation by other strains. While all strains were able to individually ferment two monosaccharide constituents of HMO, glucose and galactose, only B. longum bv. infantis and B. breve were able to ferment glucosamine, fucose and sialic acid. These results suggest that as a potential prebiotic, HMO may selectively promote the growth of certain bifidobacteria strains, and their catabolism may result in free monosaccharides in the colonic lumen.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources