Structure and assembly of Yersinia pestis F1 antigen
- PMID: 17966405
- DOI: 10.1007/978-0-387-72124-8_6
Structure and assembly of Yersinia pestis F1 antigen
Abstract
Most Gram negative pathogens express surface located fibrillar organelles that are used for adhesion to host epithelia and/or for protection. The assembly of many such organelles is managed by a highly conserved periplasmic chaperone/usher assembly pathway. During the last few years, considerable progress has been made in understanding how periplasmic chaperones mediate folding, targeting, and assembly of F1 antigen subunits into the F1 capsular antigen. In particular, structures representing snapshots of several of the steps involved in assembly have allowed us to begin to draw a detailed molecular-level picture of F1 assembly specifically, and of chaperone/usher-mediated assembly in general. Here, a brief summary of these new results will be presented.
Similar articles
-
Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation.Cell. 2003 May 30;113(5):587-96. doi: 10.1016/s0092-8674(03)00351-9. Cell. 2003. PMID: 12787500
-
A novel self-capping mechanism controls aggregation of periplasmic chaperone Caf1M.Mol Microbiol. 2007 Apr;64(1):153-64. doi: 10.1111/j.1365-2958.2007.05644.x. Mol Microbiol. 2007. PMID: 17376079
-
Large is fast, small is tight: determinants of speed and affinity in subunit capture by a periplasmic chaperone.J Mol Biol. 2012 Apr 6;417(4):294-308. doi: 10.1016/j.jmb.2012.01.020. Epub 2012 Feb 1. J Mol Biol. 2012. PMID: 22321795
-
Fiber assembly by the chaperone-usher pathway.Biochim Biophys Acta. 2004 Nov 11;1694(1-3):259-67. doi: 10.1016/j.bbamcr.2004.02.010. Biochim Biophys Acta. 2004. PMID: 15546670 Review.
-
Fimbrial polyadhesins: anti-immune armament of Yersinia.Adv Exp Med Biol. 2012;954:183-201. doi: 10.1007/978-1-4614-3561-7_24. Adv Exp Med Biol. 2012. PMID: 22782763 Review. No abstract available.
Cited by
-
An encapsulated Yersinia pseudotuberculosis is a highly efficient vaccine against pneumonic plague.PLoS Negl Trop Dis. 2012;6(2):e1528. doi: 10.1371/journal.pntd.0001528. Epub 2012 Feb 14. PLoS Negl Trop Dis. 2012. PMID: 22348169 Free PMC article.
-
Genome sequence of the deep-rooted Yersinia pestis strain Angola reveals new insights into the evolution and pangenome of the plague bacterium.J Bacteriol. 2010 Mar;192(6):1685-99. doi: 10.1128/JB.01518-09. Epub 2010 Jan 8. J Bacteriol. 2010. PMID: 20061468 Free PMC article.
-
Disruption of the NlpD lipoprotein of the plague pathogen Yersinia pestis affects iron acquisition and the activity of the twin-arginine translocation system.PLoS Negl Trop Dis. 2019 Jun 6;13(6):e0007449. doi: 10.1371/journal.pntd.0007449. eCollection 2019 Jun. PLoS Negl Trop Dis. 2019. PMID: 31170147 Free PMC article.
-
Comparative Proteomic Studies of Yersinia pestis Strains Isolated from Natural Foci in the Republic of Georgia.Front Public Health. 2015 Oct 16;3:239. doi: 10.3389/fpubh.2015.00239. eCollection 2015. Front Public Health. 2015. PMID: 26528469 Free PMC article.
-
Diversity in Genetic Regulation of Bacterial Fimbriae Assembled by the Chaperone Usher Pathway.Int J Mol Sci. 2022 Dec 22;24(1):161. doi: 10.3390/ijms24010161. Int J Mol Sci. 2022. PMID: 36613605 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources