Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007:603:116-29.
doi: 10.1007/978-0-387-72124-8_10.

Intermediary metabolism, Na+, the low calcium-response, and acute disease

Affiliations

Intermediary metabolism, Na+, the low calcium-response, and acute disease

Robert R Brubaker. Adv Exp Med Biol. 2007.

Abstract

The variables carriage of pCD, CO2 tension, exogenous ATP, L-glutamate, Mg2+, Na+, pH, source of energy, and temperature are known to modulate the low calcium response of Yersinia pestis in vitro. The role of these effectors and the basis of their interactions are defined here with emphasis on known Y. pestis-specific missense mutations in glucose 6-phosphate dehydrogenase and aspartase, which preclude use of the hexose monophosphate pathway and prevent efficient catabolism of L-glutamic acid, respectively. A physiological Ca2+-deficient rescue scenario is provided that permits essentially full-scale growth of virulent Y. pestis (<0.1 mM Na+ and 25 mM L-glutamate at pH 6.5) with expression of pCD-encoded virulence effectors and their attendant type III secretion system. Multiplication in this environment indicates that Ca2+ prevents innate toxicity of Na+. However, Na+ actually promotes growth in Ca2+-deficient medium at pH 9.0 due to the evident action of Na+-translocating NADH-ubiquinone oxidoreductase. Another Ca2+-deficient rescue scenario (100 mM Na+ and 25 mM L-glutamate at pH 5.5) permitted growth while downregulating pCD-encoded functions. A consequence of the abrupt Na+-mediated bacteriostasis typical of aspartase-deficient Y. pestis is conversion of L-glutamate to L-aspartate with release of the latter into culture supernatant fluids. Occurrence of this event in vivo would radically alter the equilibrium of host amino acid pools thereby contributing to enhanced lethality.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources