Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Dec;26(6):1666-71.
doi: 10.1002/jmri.21208.

Black-blood imaging of the human heart using rapid stimulated echo acquisition mode (STEAM) MRI

Affiliations

Black-blood imaging of the human heart using rapid stimulated echo acquisition mode (STEAM) MRI

Alexander Karaus et al. J Magn Reson Imaging. 2007 Dec.

Abstract

Purpose: To develop a rapid stimulated echo acquisition mode (STEAM) MRI technique for "black-blood" imaging of the human heart that overcomes the single-slice limitation and partially compromised blood suppression associated with double inversion-recovery techniques.

Materials and methods: Black-blood multislice images of the heart along anatomic orientations and triggered to end diastole were obtained from healthy human subjects at 3T using rapid STEAM MRI sequences with five-eighths partial Fourier encoding and variable flip angles. Single-shot STEAM images at 2.5 x 2.5 mm2 in-plane resolution and 6-mm section thickness were recorded in 230 msec from individual heartbeats. Improved signal-to-noise ratio (SNR) and higher spatial resolution of 2.0 x 2.0 mm2 and 1.5 x 1.5 mm2 were achieved by segmented multishot STEAM MRI with interleaved k-space acquisitions (160 msec each) from several heartbeats. In a single breathhold covering 18 heartbeats selected applications employed either three segments with six sections or six segments with three sections.

Results: Because stimulated echoes (STEs) dephase signals from moving spins, rapid STEAM images are free from blood signal contamination. The method offers a flexible tradeoff between spatial resolution, imaging speed (i.e., number of segments), and volume coverage (i.e., number of sections).

Conclusion: Rapid STEAM MRI of the heart emerges as a simple technique for multislice imaging of the myocardial wall with efficient flow suppression.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources