Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jun 1;85(3):840-6.
doi: 10.1002/jbm.a.31609.

Self-assembly multifunctional nanocomposites with Fe3O4 magnetic core and CdSe/ZnS quantum dots shell

Affiliations

Self-assembly multifunctional nanocomposites with Fe3O4 magnetic core and CdSe/ZnS quantum dots shell

Ying Zhang et al. J Biomed Mater Res A. .

Abstract

This paper describes a new method for self-assembling multifunctional nanocomposites with a magnetic core of iron oxide Fe(3)O(4) and a shell of CdSe/ZnS quantum dots (QDs). Two sol-gel processes were applied to form the uniform magnetic seeds (Fe(3)O(4)@SiO(2)-SH) and then the thiol coordination was used to bind the CdSe/ZnS QDs to the surface of the seeds. The multifunctional nanocomposites were characterized by means of transmission electron microscopy, X-ray diffraction, energy disperse spectroscopy, fluorescence spectroscopy, infrared spectroscopy, and superconducting quantum interference device (SQUID) magnetometer. The results showed that the magnetic Fe(3)O(4) nanoparticles and the CdSe/ZnS fluorescent QDs were combined together. The nanocomposites were of spherical shape with a mean diameter of 25 nm and exhibited well magnetic response, photostability, chemical activity, and water miscibility. The method put forward here can also be extended to combine systems of other metal oxides and QDs to fabricate core-shell nanocomposites with multifunction for biomedical applications.

PubMed Disclaimer

Publication types

LinkOut - more resources