Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jan;59(1):1-6.
doi: 10.1002/mrm.21302.

Short echo time 1H-MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses

Affiliations
Free article

Short echo time 1H-MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses

Tom W J Scheenen et al. Magn Reson Med. 2008 Jan.
Free article

Abstract

The chemical shift displacement error (CSDE) is an often-underestimated problem in slice selection for localized proton spectroscopy at higher fields. With the proposed semi-localized by adiabatic selective refocusing (LASER) pulse sequence, this problem is dealt with by using RF pulses with bandwidths in the order of 5 kHz. A combination of conventional nonadiabatic slice-selective excitation of proton spins, together with double slice-selective refocusing of the spins by two pairs of adiabatic full-passage (APF) pulses, produces a spin echo in a volume of interest (VOI) at an echo time down to 30 ms. An illustration of the CSDE of conventional point-resolved spectroscopy (PRESS) and the semi-LASER sequence is shown with a measurement of the brain of a volunteer at 3T. With one application of the technique to a patient with a glioblastoma multiforme (GBM), its clinical functionality is demonstrated. With sharp selection profiles and a small CSDE, voxels close to the edge of the VOI can also be used for evaluation. With the additional advantage of being relatively insensitive for B(1) inhomogeneities, the semi-LASER technique can be viewed as a superior substitute for conventional PRESS MR spectroscopic imaging (MRSI) at 3T and beyond.

PubMed Disclaimer

Publication types

LinkOut - more resources