Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov;58(5):1020-7.
doi: 10.1002/mrm.21403.

A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling

Affiliations
Free article

A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling

Wen-Chau Wu et al. Magn Reson Med. 2007 Nov.
Free article

Abstract

Arterial spin labeling (ASL) is capable of noninvasively measuring blood flow by magnetically tagging the protons in arterial blood, which has been conventionally achieved using instantaneous (PASL) or continuous (CASL) RF pulses. As an intermediate method, pseudocontinuous ASL (pCASL) utilizes a train of discrete RF pulses to mimic continuous tagging that is often unavailable on imagers due to the requirement of continuous RF transmit capabilities. In the present study, we implemented two versions of pCASL (balanced and unbalanced gradient waveforms in tag and control scans) for both transmit/receive coils and array receivers. Experimental data show a 50% +/- 4% increase of signal-to-noise ratio (SNR) compared with PASL and a higher tagging efficiency than amplitude-modulated (AM) CASL (80% vs. 68%). Computer simulations predict an optimal tagging efficiency of 85% for flow velocities from 10 to 60 cm/s. It is theoretically and experimentally demonstrated that the tagging efficiency of pCASL is dependent upon the resonance offset and flip angle of the RF pulse train. We conclude that pCASL has the potential of combining the merits of PASL, including less hardware demand and higher tagging efficiency, and CASL, which includes a longer tagging bolus and thus higher SNR. These improvements provide a better balance between tagging efficiency and SNR.

PubMed Disclaimer

Publication types

LinkOut - more resources