Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov;58(5):982-92.
doi: 10.1002/mrm.21386.

Optimized T1-weighted contrast for single-slab 3D turbo spin-echo imaging with long echo trains: application to whole-brain imaging

Affiliations
Free article

Optimized T1-weighted contrast for single-slab 3D turbo spin-echo imaging with long echo trains: application to whole-brain imaging

Jaeseok Park et al. Magn Reson Med. 2007 Nov.
Free article

Abstract

T(1)-weighted contrast is conventionally obtained using multislice two-dimensional (2D) spin-echo (SE) imaging. Achieving isotropic, high spatial resolution is problematic with conventional methods due to a long acquisition time, imperfect slice profiles, or high-energy deposition. Single-slab 3D SE imaging was recently developed employing long echo trains with variable low flip angles to address these problems. However, long echo trains may yield suboptimal T(1)-weighted contrast, since T(2) weighting of the signals tends to develop along the echo train. Image blurring may also occur if high spatial frequency signals are acquired with low signal intensity. The purpose of this work was to develop an optimized T(1)-weighted version of single-slab 3D SE imaging with long echo trains. Refocusing flip angles were calculated based on a tissue-specific prescribed signal evolution. Spatially nonselective excitation was used, followed by half-Fourier acquisition in the in-plane phase encoding (PE) direction. Restore radio frequency (RF) pulses were applied at the end of the echo train to optimize T(1)-weighted contrast. Imaging parameters were optimized by using Bloch equation simulation, and imaging studies of healthy subjects were performed to investigate the feasibility of whole-brain imaging with isotropic, high spatial resolution. The proposed technique permitted highly-efficient T(1)-weighted 3D SE imaging of the brain.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources