Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007:316:207-30.
doi: 10.1007/978-3-540-71329-6_11.

Beyond double-stranded RNA-type I IFN induction by 3pRNA and other viral nucleic acids

Affiliations
Review

Beyond double-stranded RNA-type I IFN induction by 3pRNA and other viral nucleic acids

M Schlee et al. Curr Top Microbiol Immunol. 2007.

Abstract

Production of type I IFN is the key response to viral infection. Since the discovery of type I IFNs in 1957, long double-stranded RNA formed during replication of many viruses was thought to be responsible for type I IFN induction, and for decades double-stranded RNA-activated protein kinase (PKR) was thought to be the receptor. Recently, this picture has dramatically changed. It now became evident that not PKR but two members of the Toll-like receptor (TLR) family, TLR7 and TLR9, and two cytosolic helicases, RIG-I and MDA-5, are responsible for the majority of type I IFNs induced upon recognition of viral nucleic acids. In this review, we focus on the molecular mechanisms by which those innate immune receptors detect viral infection. Based on the recent progress in the field, we now know that TLR7, TLR9, and RIG-I do not require long double-stranded RNA for type I IFN induction.

PubMed Disclaimer

Similar articles

Cited by