Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007;9(3):257-72.
doi: 10.31887/DCNS.2007.9.3/uschibler.

The daily timing of gene expression and physiology in mammals

Affiliations
Review

The daily timing of gene expression and physiology in mammals

Ueli Schibler. Dialogues Clin Neurosci. 2007.

Abstract

Mammalian behavior and physiology undergo daily rhythms that are coordinated by an endogenous circadian timing system. This system has a hierarchical structure, in that a master pacemaker, residing in the suprachiasmatic nucleus of the ventral hypothalamus, synchronizes peripheral oscillators in virtually all body cells. While the basic molecular mechanisms generating the daily rhythms are similar in all cells, most clock outputs are cell-specific. This conclusion is based on genome-wide transcriptome profiling studies in several tissues that have revealed hundreds of rhythmically expressed genes. Cyclic gene expression in the various organs governs overt rhythms in behavior and physiology, encompassing sleep-wake cycles, metabolism, xenobiotic detoxification, and cellular proliferation. As a consequence, chronic perturbation of this temporal organization may lead to increased morbidity and reduced lifespan.

La conducta y la fisiología de los mamíferos dependen de ritmos diarios que están coordinados por un sistema circadiano endógeno. Este sistema tiene una estructura jerárquica, en la cual un marcapasos maestro, localizado en el núcleo supra-quiasmático del hipotálamo ventral, tiene la potencialidad de sincronizar osciladores periféricos en casi todas las células del cuerpo. Estudios acerca del perfil del transcriptoma de todo el genoma en diversos tejidos han demostrado que cientos de genes se expresan de una manera rítmica. La expresión cíclica de genes en diversos órganos controla determinados ritmos del comportamiento y de la fisiología, incluyendo el ciclo sueño vigilia, el metabolismo, la detoxificación xenobibtica y la proliferación celular. Como consecuencia, la alteración crónica de esta organización temporal puede llevar a un aumento de la morbilidad y a una reducción de la expectativa de vida. Sin embargo, aun se requiere de mucho trabajo de laboratorio para poder establecer relaciones inequívocas entre la desorganización de la fisiología circadiana y la aparición de la enfermedad.

La physiologie et le comportement des mammifères suivent des rythmes quotidiens coordonnés par un système circadien de synchronisation endogène. Ce système est hiérarchisé en ce sens que son pacemaker principal, situé dans le noyau suprachiasmatique de l'hypothalamus ventral, synchronise des oscillateurs périphériques dans presque toutes les cellules de l'organisme. Alors que les mécanismes moléculaires qui sont à la base des rythmes endogènes sont semblables dans toutes les cellules, les conséquences du fonctionnement des horloges biologiques diffèrent quant à elles selon les cellules. Des études du transcriptome du génome entier dans plusieurs tissus ont montré des centaines de gènes exprimés de façon rythmique. L'expression cyclique de gènes dans différents organes gouverne des rythmes mesurables en physiologie et en comportements, comme les cycles veille-sommeil, le métabolisme, la détoxication xénobiotique et la prolifération cellulaire. Une perturbation chronique de cette organisation temporelle peut donc augmenter la morbidité et réduire la durée de vie. D'autres travaux de laboratoire sont néanmoins nécessaires pour confirmer les relations de cause à effet entre des modifications de la physiologie circadienne et la survenue de la maladie.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.. Feedback loop model for mammalian circadian oscillator. The transcription of Per and Cry genes is activated by heterodimers between BMAL1 (B) and either of the two related proteins CLOCK (C) or NPAS2 (N). The polycomb protein EZH2 interacts with these heterodimers and thereby facilitates their action. The accumulation and activity of PER and CRY proteins are also influenced by phosphorylation by protein kinases (CK1δ, ε), by ubiquitination via a complex containing the F-box protein FBXL3 (specific for CRYs), by the histone methyl transferase binding protein WDR5, and by MONO, an RNAand DNA binding protein. DEC1 and DEC2 (D1, 2) compete with BMAL1-CLOCK/NPAS2 heterodimers for E-box binding and thereby reduce E-box-mediated transactivation. A accessory feedback loop, employing the nuclear orphan receptors RORα, RORβ, and RORγ (RORα,β, γ) as activators, and REV-ERBα and REV-ERβ (REV-ERBα, β) as repressors, regulates the circadian transcription of Bmal1 See text for further explanations.
Figure 2.
Figure 2.. A mouse with conditionally active hepatocyte clocks. A transgenic mouse was generated in which the function of hepatocyte circadian oscillators requires the tetracycline derivative doxycycline (Dox). Hepatocyte-specific, Dox-dependent overexpression of REV-ERBα (rREV= rat REV-ERBα) was achieved by placing a rat REV-ERBa (rREV-ERBα) cDNA transgene under the control of seven tetracycline operators. In the liver of transgenic mice expressing the Tet activator from the hepatocyte-specific Clebpβ locus control region (LCR), rREV-ERBα transcription is constitutively high in the absence of the tetracycline analog Dox. This leads to a constitutive repression of Bmal1 transcription and thereby to an attenuation of circadian oscillator function, since BMAL1 is required for circadian rhythm generation. The addition of Dox to the food or drinking water abolishes the binding of Tet activators to their operators of the rREV-ERBα transgene promoter, and thereby provokes the reactivation of Bmail transcription. Under these conditions, the circadian regulation of Bmal1 transcription is accomplished by a rhythmic exchange of ROR activators and endogenous REV-ERB repressors (mREV= murine REV-ERBα), as in wild-type mice (see Figure 1). Hence, circadian hepatocyte oscillators are operative in the presence of Dox.
Figure 3.
Figure 3.. Systemically and oscillator-driven circadian liver genes. Circadian liver transcripts were identified in the transgenic mice presented in Figure 2, using genome-wide Affymetrix microarray hybridization with liver RNAs harvested at 4-hour intervals over 2 days from doxycycline-treated and untreated animals (see ref 84). This technique enables the simultaneous quantification of mRNA levels for virtually all of the 15 000 genes that are active in the liver. In doxycycline-treated mice, core clock and clock-controlled genes (CCGs) as well as systemically controlled genes, are expressed in a circadian manner. In mice not receiving doxycycline in the food, only systemically controlled genes are rhythmically expressed. The heat maps below the livers are phase maps of cyclically accumulating transcripts (red for high expression, green for low expression). S stands for mRNAs whose rhythmic transcription is controlled by systemic cues, and S+O stands for transcripts whose rhythmic transcription can be controlled by either systemic cues or hepatocyte oscillators. Comparison of the S+O heat maps of untreated and doxycycline-treated mice reveals that the circadian expression of most genes requires functional hepatocyte clocks. RNA, ribonucleic acid; mRNA, messenger ribonucleic acid
Figure 4.
Figure 4.. A clock output pathway regulating circadian xenobiotic detoxification. The SCN master pacemaker synchronizes circadian oscillators in peripheral organs, such as liver, kidney and small intestine. The molecular signaling pathways involved in this process are still poorly understood, but they are related to feeding fasting cycles, body temperature rhythms, cyclic hormone secretion (eg, glucocorticoids), and possibly the rhythmic accumulation of metabolites. The molecular clocks in liver, kidney and small intestine govern the circadian expression of the PAR bZip transcription factors DBP, HLF, and TEF, which in turn modulate the rhythmic expression of regulators and enzymes involved in detoxification (see ref 122 for details). SCN, suprachiasmatic nuclei

Similar articles

Cited by

References

    1. Dunlap JC. Molecular bases for circadian clocks. Cell. 1999;96:271–290. - PubMed
    1. De Mairan JJD. Observation botanique. Histoire de l'Académie Royale des Sciences. 1729:35–36.
    1. de Candolle AP. Physiologie végétale; ou Exposition des forces et des fonctions vitales des végétaux: pour servir de suite à l'organographie végétale, et d'introduction à la botanique géographique et agricole. Paris, France: Bechet; 1832
    1. Gehring W., Rosbash M. The coevolution of blue-light photoreception and circadian rhythms. J Mol Evol. 2003;57 (suppl 1):S286–S289. - PubMed
    1. Reppert SM., Weaver DR. Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol. 2001;63:647–676. - PubMed

Publication types

MeSH terms