Adenosine modulation of potassium currents in postganglionic neurones of cultured avian ciliary ganglia
- PMID: 1797312
- PMCID: PMC1908565
- DOI: 10.1111/j.1476-5381.1991.tb12451.x
Adenosine modulation of potassium currents in postganglionic neurones of cultured avian ciliary ganglia
Abstract
1. Potassium currents in cultured postganglionic neurones of avian ciliary ganglia were analysed under whole-cell voltage clamp and their modulation by adenosine determined. 2. In the presence of tetrodotoxin (200 nM), and with moderate holding potentials (Vh = -40 mV), the steady-state current-voltage (I/V) curve was N-shaped over the range from -70 mV to +155 mV. CsCl (1 M) blocked the current, indicating that it was carried by K+. If Ca2+ influx was blocked by CdCl2 (500 microM) then the outward current was reduced and the N-shaped I-V curve lost, indicating the presence of a calcium-activated potassium current (IK(Ca)); the remaining current, due to the delayed rectifier (IK), increased with depolarization up to about a conductance of 10 nS near + 50 mV. This IK was 50% activated at about +20 mV and 50% inactivated at about -50 mV. Adenosine (10 microM) had similar affects on the N-shaped I/V curve as did CdCl2, indicating that it blocked IK(Ca). However, adenosine had little affect on the steady-state current in the presence of CdCl, indicating that it did not much affect IK. 3. In the presence of tetrodotoxin (200 nM), a large inward current occurred for large hyperpolarizations from a Vh = -50 mV. This inward rectifying current (IIR) had a reversal potential near EK and showed 50% activation at about -130 mV. Adenosine (10 microM) reduced IIR, by as much as 50% at large hyperpolarizations beyond -80 mV. 4. Relaxations of the outward current on hyperpolarization from Vh = -30mV were blocked by carbachol (10 microM), had a reversal potential near EK, and an I/V curve typical of 1M currents. These currents were little affected by adenosine (10 microM). 5. A fast transient outward current, due to depolarizing pulses from a large Vh = -110mV was observed in the presence of tetrodotoxin (200 nM). This had the characteristics of an IA current as it could be blocked with 4-aminopyridine (5 mM) and was 50% activated at about -20 mV and 50% inactivated at about -94 mV. The IA current was reduced by 42% at a depolarization of -20 mV by adenosine (10 microM). 6. Many neurones possessed a fast transient outward current that was blocked by tetrodotoxin (200nM). This current could be blocked with 4-aminopyridine (5mM); it therefore has the characteristics of a sodium-activated potassium current ('K(Na)). This IK(Na) was unaffected by adenosine (1O microM). 7. These results are discussed in relation to the role of adenosine in blocking Ca2 + channels and thereby modifying calcium-dependent components of K+ currents.
Similar articles
-
Nitric oxide modulation of calcium-activated potassium channels in postganglionic neurones of avian cultured ciliary ganglia.Br J Pharmacol. 1993 Nov;110(3):995-1002. doi: 10.1111/j.1476-5381.1993.tb13912.x. Br J Pharmacol. 1993. PMID: 7905346 Free PMC article.
-
Potassium currents in adult rat intracardiac neurones.J Physiol. 1995 Jul 1;486 ( Pt 1)(Pt 1):15-31. doi: 10.1113/jphysiol.1995.sp020787. J Physiol. 1995. PMID: 7562632 Free PMC article.
-
Comparison of voltage-dependent potassium currents in rat pyramidal neurons acutely isolated from hippocampal regions CA1 and CA3.J Neurophysiol. 1995 Nov;74(5):1982-95. doi: 10.1152/jn.1995.74.5.1982. J Neurophysiol. 1995. PMID: 8592191
-
Voltage-dependent conductances of solitary ganglion cells dissociated from the rat retina.J Physiol. 1987 Apr;385:361-91. doi: 10.1113/jphysiol.1987.sp016497. J Physiol. 1987. PMID: 2443669 Free PMC article. Review.
-
Membrane currents in hippocampal neurons.Prog Brain Res. 1990;83:141-60. doi: 10.1016/s0079-6123(08)61247-9. Prog Brain Res. 1990. PMID: 2203096 Review.
Cited by
-
Nitric oxide modulation of calcium-activated potassium channels in postganglionic neurones of avian cultured ciliary ganglia.Br J Pharmacol. 1993 Nov;110(3):995-1002. doi: 10.1111/j.1476-5381.1993.tb13912.x. Br J Pharmacol. 1993. PMID: 7905346 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous