Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Dec 1;79(23):9014-21.
doi: 10.1021/ac701660x. Epub 2007 Oct 31.

Microfluidic device for the discrimination of single-nucleotide polymorphisms in DNA oligomers using electrochemically actuated alkaline dehybridization

Affiliations

Microfluidic device for the discrimination of single-nucleotide polymorphisms in DNA oligomers using electrochemically actuated alkaline dehybridization

Huaibin Zhang et al. Anal Chem. .

Abstract

This work describes an integrated microfluidic (mu-fl) device that can be used to effect separations that discriminate single-nucleotide polymorphisms (SNP) based on kinetic differences in the lability of perfectly matched (PM) and mismatched (MM) DNA duplexes during alkaline dehybridization. For this purpose a 21-base single-stranded DNA (ssDNA) probe sequence was immobilized on agarose-coated magnetic beads, that in turn can be localized within the channels of a poly(dimethylsiloxane) microfluidic device using an embedded magnetic separator. The PM and MM ssDNA targets were hybridized with the probe to form a mixture of PM and MM DNA duplexes using standard protocols, and the hydroxide ions necessary for mediating the dehybridization were generated electrochemically in situ by performing the oxygen reduction reaction (ORR) using O2 that passively permeates the device at a Pt working electrode (Pt-WE) embedded within the microfluidic channel system. The alkaline DNA dehybridization process was followed using fluorescence microscopy. The results of this study show that the two duplexes exhibit different kinetics of dehybridization, rate profiles that can be manipulated as a function of both the amount of the hydroxide ions generated and the mass-transfer characteristics of their transport within the device. This system is shown to function as a durable platform for effecting hybridization/dehybridization cycles using a nonthermal, electrochemical actuation mechanism, one that may enable new designs for lab-on-a-chip devices used in DNA analysis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources