Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct 31:6:142.
doi: 10.1186/1475-2875-6-142.

Monitoring the operational impact of insecticide usage for malaria control on Anopheles funestus from Mozambique

Affiliations

Monitoring the operational impact of insecticide usage for malaria control on Anopheles funestus from Mozambique

Sonia L R Casimiro et al. Malar J. .

Erratum in

  • Malar J. 2008;7:8

Abstract

Background: Indoor residual spraying (IRS) has again become popular for malaria control in Africa. This combined with the affirmation by WHO that DDT is appropriate for use in the absence of longer lasting insecticide formulations in some malaria endemic settings, has resulted in an increase in IRS with DDT as a major malaria vector control intervention in Africa. DDT was re-introduced into Mozambique's IRS programme in 2005 and is increasingly becoming the main insecticide used for malaria vector control in Mozambique. The selection of DDT as the insecticide of choice in Mozambique is evidence-based, taking account of the susceptibility of Anopheles funestus to all available insecticide choices, as well as operational costs of spraying. Previously lambda cyhalothrin had replaced DDT in Mozambique in 1993. However, resistance appeared quickly to this insecticide and, in 2000, the pyrethroid was phased out and the carbamate bendiocarb introduced. Low level resistance was detected by biochemical assay to bendiocarb in 1999 in both An. funestus and Anopheles arabiensis, although this was not evident in WHO bioassays of the same population.

Methods: Sentinel sites were established and monitored for insecticide resistance using WHO bioassays. These assays were conducted on 1-3 day old F1 offspring of field collected adult caught An. funestus females to determine levels of insecticide resistance in the malaria vector population. WHO biochemical assays were carried out to determine the frequency of insecticide resistance genes within the same population.

Results: In surveys conducted between 2002 and 2006, low levels of bendiocarb resistance were detected in An. funestus, populations using WHO bioassays. This is probably due to significantly elevated levels of Acetylcholinesterase levels found in the same populations. Pyrethroid resistance was also detected in populations and linked to elevated levels of p450 monooxygenase activity. One site had shown reduction in pyrethroid resistance since the base line in 1999.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Insecticide resistance status at twenty localities for An. funestus in Mozambique.

Similar articles

Cited by

References

    1. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature. 2005;434:214–217. doi: 10.1038/nature03342. - DOI - PMC - PubMed
    1. Breman JG, Alilio MS, Mills A. Conquering the intolerable burden of malaria: what's new, what's needed: a summary. Am J Trop Med Hyg. 2004;71:1–15. - PubMed
    1. Coleman M, Sharp B, Seocharan I, Hemingway J. Developing an evidence-based decision support system for rational insecticide choice in the control of African malaria vectors. J Med Entomol. 2006;43:663–668. doi: 10.1603/0022-2585(2006)43[663:DAEDSS]2.0.CO;2. - DOI - PubMed
    1. Gahan JB, Travis BV, Morton PA, Lindquist AW. DDT as a Residual-Type Treatment to Control Anopheles quadrimaculatus. Econ Entom. 1945;38:251–235.
    1. Trigg PI, Kondrachine AV. Commentary: malaria control in the 1990s. Bull World Health Organ. 1998;76:11–16. - PMC - PubMed

Publication types