Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov;388(11):1199-207.
doi: 10.1515/BC.2007.142.

Differential methylation kinetics of individual target site strands by T4Dam DNA methyltransferase

Affiliations

Differential methylation kinetics of individual target site strands by T4Dam DNA methyltransferase

Victor V Zinoviev et al. Biol Chem. 2007 Nov.

Abstract

Prokaryote DNA methyltransferases (MTases) of the Dam family (including those of bacteriophages T2 and T4) catalyze methyl group transfer from S-adenosyl-L-methionine (AdoMet), producing S-adenosyl-L-homocysteine (AdoHcy) and methylated adenine residues in palindromic GATC sequences. Dam DNA MTases, as all site-specific enzymes interacting with polymeric DNA, require a mechanism of action that ensures a rapid search for specific targets for catalytic action, during both the initial and subsequent rounds of methylation. The results of pre-steady-state (reaction burst) and steady-state methylation analyses of individual targets permitted us to monitor the action of T4Dam, which has three degrees of freedom: sliding, reorientation and adaptation to the canonical GATC sequence. The salient results are as follows: (i) 40mer substrate duplexes containing two canonical GATC sites showed differential methylation of the potential targets, i.e., T4Dam exhibited a preference for one site/target, which may present the better 'kinetic trap' for the enzyme. (ii) Prior hemimethylation of the two sites made both targets equally capable of being methylated during the pre-steady-state reaction. (iii) Although capable of moving in either direction along double-stranded DNA, there are some restrictions on T4Dam reorientation/adaptation on 40mer duplexes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources