Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Oct;18(5):425-31.
doi: 10.1016/j.copbio.2007.09.005. Epub 2007 Oct 30.

Engineered minichromosomes in plants

Affiliations
Review

Engineered minichromosomes in plants

Weichang Yu et al. Curr Opin Biotechnol. 2007 Oct.

Abstract

Genetic engineering for complex or combined traits requires the simultaneous expression of multiple genes, and has been considered as the bottleneck for the next generation of genetic engineering in plants. Minichromosome technology provides one solution to the stable expression and maintenance of multiple transgenes in one genome. For example, minichromosomes can be used as a platform for efficient stacking of multiple genes for insect, bacterial and fungal resistances together with herbicide tolerance and crop quality traits. All the transgenes would reside on an independent minichromosome, not linked to any endogenous genes; thus linkage drag can be avoided. Engineered minichromosomes can be easily constructed by a telomere-mediated chromosomal truncation strategy. This approach does not rely on the cloning of centromere sequences, which are species-specific, and bypasses the any complications of epigenetic components for centromere specification. Thus, this technique can be easily extended to all plant species. The engineered minichromosome technology can also be used in combination with site-specific recombination systems to facilitate the stacking of multiple transgenes.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources