Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Dec 1;23(23):3155-61.
doi: 10.1093/bioinformatics/btm509. Epub 2007 Oct 31.

Accurate prediction of enzyme mutant activity based on a multibody statistical potential

Affiliations

Accurate prediction of enzyme mutant activity based on a multibody statistical potential

Majid Masso et al. Bioinformatics. .

Abstract

Motivation: An important area of research in biochemistry and molecular biology focuses on characterization of enzyme mutants. However, synthesis and analysis of experimental mutants is time consuming and expensive. We describe a machine-learning approach for inferring the activity levels of all unexplored single point mutants of an enzyme, based on a training set of such mutants with experimentally measured activity.

Results: Based on a Delaunay tessellation-derived four-body statistical potential function, a perturbation vector measuring environmental changes relative to wild type (wt) at every residue position uniquely characterizes each enzyme mutant for model development and prediction. First, a measure of model performance utilizing area (AUC) under the receiver operating characteristic (ROC) curve surpasses 0.83 and 0.77 for data sets of experimental HIV-1 protease and T4 lysozyme mutants, respectively. Additionally, a novel method is introduced for evaluating statistical significance associated with the number of correct test set predictions obtained from a trained model. Third, 100 stratified random splits of the protease and T4 lysozyme mutant data sets into training and test sets achieve 77.0% and 80.8% mean accuracy, respectively. Next, protease and T4 lysozyme models trained with experimental mutants are used to predict activity levels for all remaining mutants; a subsequent search for publications reporting on dozens of these test mutants reveals that experimental results are matched by 79% and 86% of predictions, respectively. Finally, learning curves for each mutant enzyme system indicate the influence of training set size on model performance.

Availability: Prediction databases at http://proteins.gmu.edu/automute/

PubMed Disclaimer

Similar articles

Cited by