Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Jan;294(1):F10-27.
doi: 10.1152/ajprenal.00432.2007. Epub 2007 Oct 31.

P2 receptors in the regulation of renal transport mechanisms

Affiliations
Free article
Review

P2 receptors in the regulation of renal transport mechanisms

Volker Vallon. Am J Physiol Renal Physiol. 2008 Jan.
Free article

Abstract

Extracellular nucleotides (e.g., ATP) regulate physiological and pathophysiological processes through activation of nucleotide P2 receptors in the plasma membrane. Examples include such diverse processes as communication from taste buds to gustatory nerves, platelet aggregation, nociception, or neutrophil chemotaxis. Over approximately the last 15 years, evidence has also accumulated that cells in renal epithelia release nucleotides in response to physiological stimuli and that these nucleotides act in a paracrine and autocrine way to activate P2 receptors and play a significant role in the regulation of transport mechanisms and cell volume regulation. This review discusses potential stimuli and mechanisms involved in nucleotide release in renal epithelia and summarizes the available data on the expression and function of nucleotide P2 receptors along the native mammalian tubular and collecting duct system. Using established agonist profiles for P2 receptor subtypes, significant insights have been gained particularly into a potential role for P2Y(2)-like receptors in the regulation of transport mechanisms in the collecting duct. Due to the lack of receptor subtype-specific antagonists, however, the in vivo relevance of P2 receptor subtypes is unclear. Studies in gene knockout mice provided first insights including an antihypertensive activity of P2Y(2) receptors that is linked to an inhibitory influence on renal Na(+) and water reabsorption. We are only beginning to unravel the important roles of extracellular nucleotides and P2 receptors in the regulation of the diverse transport mechanisms of the kidney.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources