Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Oct 31;27(44):11803-6.
doi: 10.1523/JNEUROSCI.3500-07.2007.

Neurobiology of escalated aggression and violence

Affiliations
Review

Neurobiology of escalated aggression and violence

Klaus A Miczek et al. J Neurosci. .

Abstract

Psychopathological violence in criminals and intense aggression in fruit flies and rodents are studied with novel behavioral, neurobiological, and genetic approaches that characterize the escalation from adaptive aggression to violence. One goal is to delineate the type of aggressive behavior and its escalation with greater precision; second, the prefrontal cortex (PFC) and brainstem structures emerge as pivotal nodes in the limbic circuitry mediating escalated aggressive behavior. The neurochemical and molecular work focuses on the genes that enable invertebrate aggression in males and females and genes that are expressed or suppressed as a result of aggressive experiences in mammals. The fruitless gene, immediate early genes in discrete serotonin neurons, or sex chromosome genes identify sexually differentiated mechanisms for escalated aggression. Male, but not female, fruit flies establish hierarchical relationships in fights and learn from previous fighting experiences. By manipulating either the fruitless or transformer genes in the brains of male or female flies, patterns of aggression can be switched with males using female patterns and vice versa. Work with Sts or Sry genes suggests so far that other genes on the X chromosomes may have a more critical role in female mouse aggression. New data from feral rats point to the regulatory influences on mesocortical serotonin circuits in highly aggressive animals via feedback to autoreceptors and via GABAergic and glutamatergic inputs. Imaging data lead to the hypothesis that antisocial, violent, and psychopathic behavior may in part be attributable to impairments in some of the brain structures (dorsal and ventral PFC, amygdala, and angular gyrus) subserving moral cognition and emotion.

PubMed Disclaimer

References

    1. Bannai M, Fish EW, Faccidomo S, Miczek KA. Anti-aggressive effects of agonists at 5-HT1B receptors in the dorsal raphe nucleus of mice. Psychopharmacology. 2007;193:295–304. - PubMed
    1. Caramaschi D, de Boer SF, Koolhaas JM. Differential role of the 5-HT1A receptor in aggressive and non-aggressive mice: an across-strain comparison. Physiol Behav. 2007;90:590–601. - PubMed
    1. Certel SJ, Savella MG, Schlegel DCF, Kravitz EA. Modulation of Drosophila male behavioral choice. Proc Natl Acad Sci USA. 2007;104:4706–4711. - PMC - PubMed
    1. Chiavegatto S, Quadros IMH, Trindade A, Ambar G, Miczek KA. Selective reduction of prefrontal cortex serotonin receptors gene expression in alcohol-heightened aggressive mice. Soc Neurosci Abstr. 2007;33:531–24.
    1. Coccaro EF. Central serotonin and impulsive aggression. Br J Psychiatry. 1989;155:52–62. - PubMed

Publication types

LinkOut - more resources