Enantioselective dehydroxylation of enterodiol and enterolactone precursors by human intestinal bacteria
- PMID: 17978485
- DOI: 10.1248/bpb.30.2113
Enantioselective dehydroxylation of enterodiol and enterolactone precursors by human intestinal bacteria
Abstract
During the course of experiments on the transformation of lignans to phytoestrogenic substances, such as enterodiol (END) and enterolactone (ENL), a previously isolated bacterium, Eubacterium (E.) sp. strain SDG-2, capable of phenolic p-dehydroxylation in the biotransformation of secoisolariciresinol diglucoside to END and ENL, was concluded to be Eggerthella (Eg.) lenta (Eg. sp. SDG-2) on the basis of 16S rRNA gene sequence analysis. The bacterium could transform (+)-dihydroxyenterodiol (DHEND, 3a) to (+)-END (1a), but not for (-)-DHEND (3b) to (-)-END (1b) under anaerobic conditions. By incubation of a mixture of (+)- and (-)-dihydroxyenterolactone (DHENL, 4a and 4b) with Eg. sp. SDG-2, only (-)-DHENL (4b) was converted to (-)-ENL (2b), selectively. On the other hand, we isolated a different bacterium, strain ARC-1, capable of dehydroxylating (-)-DHEND (3b) to (-)-END (1b) from human feces. Strain ARC-1 could transform not only (-)-DHEND (3b) to (-)-END (1b), but also (+)-DHENL (4a) to (+)-ENL (2b). However, the bacterium could not transform (+)-DHEND (3a) and (-)-DHENL (4b). Both bacterial strains demonstrated different enantioselective dehydroxylation.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
