Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007;7(18):1800-5.
doi: 10.2174/156802607782507394.

Recent developments of the PET imaging agents for metabotropic glutamate receptor subtype 5

Affiliations
Review

Recent developments of the PET imaging agents for metabotropic glutamate receptor subtype 5

Meixiang Yu. Curr Top Med Chem. 2007.

Abstract

Glutamate is a major excitatory neurotransmitter in central nervous system (CNS) acting through ionotropic and G-protein coupled metabotropic glutamate receptors. Metabotropic glutamate receptor 5 (mGluR5), a subtype in the group I mGluRs, presents in high density in many brain regions (hippocampus, cortex and olfactory system). Stimulation of mGluR5 leads to the release of calcium from intracellular supplies and protein kinase C activation. Excessive activation of mGluR5 has been associated with psychiatric, neurological and neurodegenerative diseases, including Parkinson's disease, anxiety, depression, schizophrenia, pain, epilepsy, focal and global ischemia diseases. 2-methyl-6-(phenylethynyl)pyridine (MPEP) and 2-methyl-4-(pyridin-3-ylethynyl)thiazole (MTEP) are the first generation of non-competitive mGluR5 antagonists with potent, selective and systemically active properties. They have therapeutic functions in varied diseases. Investigation of mGluR5 physiological functions under pathologic conditions in patients will be critically important in mGluR5 antagonist's therapy using noninvasive positron emission tomography (PET) imaging technique. There are eleven mGluR5 imaging PET tracers have been tested in animal studies. This article highlights efforts on the design and development of novel PET tracers for mGluR5 in vivo imaging.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances