Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Sep-Oct;33(5):603-21.
doi: 10.1590/s1677-55382007000500002.

Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis

Affiliations
Free article
Review

Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis

Marcello Cocuzza et al. Int Braz J Urol. 2007 Sep-Oct.
Free article

Abstract

Oxidative stress (OS) in the reproductive tract is now a real entity and concern due to the potential harmful effects of high levels of reactive oxygen species (ROS) on sperm number, motility, quality, and function including damage to sperm nuclear DNA. Evaluation of OS related damage to non-functional sperm is highly relevant as intracytoplasmic sperm injection (ICSI) technique, an effective therapy for severe male factor infertility, bypasses the majority of reproductive tract deficiencies. Despite the controversial findings in the existing literature, there is now enough evidence to show that sperm DNA damage is detrimental to reproductive outcomes. In addition, spermatozoa of infertile men are suggested to carry more DNA damage than do the spermatozoa from fertile men. Besides impairment of fertility such damage is likely to increase the transmission of genetic diseases during the assisted reproductive procedures. Standardization of protocols to assess reactive oxygen species and DNA damage is very important in introducing these tests in such clinical practice. Thus evaluation of seminal ROS levels and extent of sperm DNA damage especially in an infertile male may help develop new therapeutic strategies and improve success of assisted reproductive techniques (ART).

PubMed Disclaimer

LinkOut - more resources