Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Jan 1:13:2001-21.
doi: 10.2741/2819.

Regulation of osteogenic differentiation during skeletal development

Affiliations
Review

Regulation of osteogenic differentiation during skeletal development

Zhong-Liang Deng et al. Front Biosci. .

Abstract

Bone formation during skeletal development involves a complex coordination among multiple cell types and tissues. Bone is of crucial importance for the human body, providing skeletal support, and serving as a home for the formation of hematopoietic cells and as a reservoir for calcium and phosphate. Bone is also continuously remodeled in vertebrates throughout life. Osteoblasts and osteoclasts are specialized cells responsible for bone formation and resorption, respectively. Early development of the vertebrate skeleton depends on genes that control the distribution and proliferation of cells from cranial neural crest, sclerotomes, and lateral plate mesoderm into mesenchymal condensations, where cells differentiate to osteoblasts. Significant progress has been made over the past decade in our understanding of the molecular framework that controls osteogenic differentiation. A large number of morphogens, signaling molecules, and transcriptional regulators have been implicated in regulating bone development. A partial list of these factors includes the Wnt/beta-catenin, TGF-beta/BMP, FGF, Notch and Hedgehog signaling pathways, and Runx2, Osterix, ATF4, TAZ, and NFATc1 transcriptional factors. A better understanding of molecular mechanisms behind osteogenic differentiation would not only help us to identify pathogenic causes of bone and skeletal diseases but also lead to the development of targeted therapies for these diseases.

PubMed Disclaimer

Publication types

LinkOut - more resources