Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov;210(Pt 22):3955-61.
doi: 10.1242/jeb.008953.

Functional significance of the uncinate processes in birds

Affiliations

Functional significance of the uncinate processes in birds

Peter G Tickle et al. J Exp Biol. 2007 Nov.

Abstract

The functional significance of the uncinate processes to the ventilatory mechanics of birds was examined by combining analytical modeling with morphological techniques. A geometric model was derived to determine the function of the uncinate processes and relate their action to morphological differences associated with locomotor specializations. The model demonstrates that uncinates act as levers, which improve the mechanical advantage for the forward rotation of the dorsal ribs and therefore lowering of the sternum during respiration. The length of these processes is functionally important; longer uncinate processes increasing the mechanical advantage of the Mm. appendicocostales muscle during inspiration. Morphological studies of four bird species showed that the uncinate process increased the mechanical advantage by factors of 2-4. Using canonical variate analysis and analysis of variance we then examined the variation in skeletal parameters in birds with different primary modes of locomotion (non-specialists, walking and diving). Birds clustered together in distinct groups, indicating that uncinate length is more similar in birds that have the same functional constraint, i.e. specialization to a locomotor mode. Uncinate processes are short in walking birds, long in diving species and of intermediate length in non-specialist birds. These results demonstrate that differences in the breathing mechanics of birds may be linked to the morphological adaptations of the ribs and rib cage associated with different modes of locomotion.

PubMed Disclaimer

Publication types

LinkOut - more resources