Trehalose-6-phosphate synthase/phosphatase regulates cell shape and plant architecture in Arabidopsis
- PMID: 17981987
- PMCID: PMC2230562
- DOI: 10.1104/pp.107.107441
Trehalose-6-phosphate synthase/phosphatase regulates cell shape and plant architecture in Arabidopsis
Abstract
The vacuole occupies most of the volume of plant cells; thus, the tonoplast marker delta-tonoplast intrinsic protein-green fluorescent protein delineates cell shape, for example, in epidermis. This permits rapid identification of mutants. Using this strategy, we identified the cell shape phenotype-1 (csp-1) mutant in Arabidopsis thaliana. Beyond an absence of lobes in pavement cells, phenotypes included reduced trichome branching, altered leaf serration and stem branching, and increased stomatal density. This result from a point mutation in AtTPS6 encoding a conserved amino-terminal domain, thought to catalyze trehalose-6-phosphate synthesis and a carboxy-terminal phosphatase domain, is catalyzing a two-step conversion to trehalose. Expression of AtTPS6 in the Saccharomyces cerevisiae mutants tps1 (encoding a synthase domain) and tps2 (encoding synthase and phosphatase domains) indicates that AtTPS6 is an active trehalose synthase. AtTPS6 fully complemented defects in csp-1. Mutations in class I genes (AtTPS1-AtTPS4) indicate a role in regulating starch storage, resistance to drought, and inflorescence architecture. Class II genes (AtTPS5-AtTPS11) encode multifunctional enzymes having synthase and phosphatase activity. We show that class II AtTPS6 regulates plant architecture, shape of epidermal pavement cells, and branching of trichomes. Thus, beyond a role in development, we demonstrate that the class II gene AtTPS6 is important for controlling cellular morphogenesis.
Figures






References
-
- Adams RP, Kendall E, Kartha KK (1990) Comparison of free sugars in growing and desiccated plants of Selaginella lepidophylla. Biochem Syst Ecol 18 107–110
-
- Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301 653–657 - PubMed
-
- Augier J (1954) The biochemistry of the North American algae, Tuomeyafluviatillis. Compt Rend 239 87–89 - PubMed
-
- Bell CJ, Ecker JR (1994) Assignment of 30 micro satellite loci to the linkage map of Arabidopsis. Genomics 9 137–144 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Molecular Biology Databases