Predictive QSAR modeling for the successful predictions of the ADMET properties of candidate drug molecules
- PMID: 17985997
- DOI: 10.2174/157016307782109706
Predictive QSAR modeling for the successful predictions of the ADMET properties of candidate drug molecules
Abstract
Chemical breakthrough generates large numbers of prospective drug molecules; the use of ADMET (absorption, distribution, metabolism, excretion and toxicity) properties is flattering progressively more imperative in the drug discovery, assortment, development and promotion processes. Due to the inauspicious ADMET properties a huge amount of molecules in the development stage got failure. In the past years several authors reported that it possible to do some prediction of the ADMET properties using the structural features of the molecules, suing several approaches. One of the most important approaches is QSAR modeling of the data derived from their activity profiles and their different structural features (i.e., quantitative molecular descriptors). This review is critically assessing some of the most important issues for the effective prediction of ADMET properties of drug candidates based on QSAR modeling approaches.
Similar articles
-
Predictions of the ADMET properties of candidate drug molecules utilizing different QSAR/QSPR modelling approaches.Curr Drug Metab. 2010 May;11(4):285-95. doi: 10.2174/138920010791514306. Curr Drug Metab. 2010. PMID: 20450477 Review.
-
Informing the Selection of Screening Hit Series with in Silico Absorption, Distribution, Metabolism, Excretion, and Toxicity Profiles.J Med Chem. 2017 Aug 24;60(16):6771-6780. doi: 10.1021/acs.jmedchem.6b01577. Epub 2017 May 5. J Med Chem. 2017. PMID: 28418656 Review.
-
Toward in silico structure-based ADMET prediction in drug discovery.Drug Discov Today. 2012 Jan;17(1-2):44-55. doi: 10.1016/j.drudis.2011.10.023. Epub 2011 Oct 29. Drug Discov Today. 2012. PMID: 22056716 Review.
-
ADMET tools in the digital era: Applications and limitations.Adv Pharmacol. 2025;103:65-80. doi: 10.1016/bs.apha.2025.01.004. Epub 2025 Feb 12. Adv Pharmacol. 2025. PMID: 40175055 Review.
-
Recent uses of topological indices in the development of in silico ADMET models.Curr Opin Drug Discov Devel. 2005 Jan;8(1):32-7. Curr Opin Drug Discov Devel. 2005. PMID: 15679169 Review.
Cited by
-
Artificial intelligence: machine learning for chemical sciences.J Chem Sci (Bangalore). 2022;134(1):2. doi: 10.1007/s12039-021-01995-2. Epub 2021 Dec 21. J Chem Sci (Bangalore). 2022. PMID: 34955617 Free PMC article.
-
Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling.Drug Discov Today. 2020 Sep;25(9):1624-1638. doi: 10.1016/j.drudis.2020.07.005. Epub 2020 Jul 11. Drug Discov Today. 2020. PMID: 32663517 Free PMC article. Review.
-
Meta-heuristics on quantitative structure-activity relationships: study on polychlorinated biphenyls.J Mol Model. 2010 Feb;16(2):377-86. doi: 10.1007/s00894-009-0540-z. Epub 2009 Jul 17. J Mol Model. 2010. PMID: 19609578
-
Hybrid-genetic algorithm based descriptor optimization and QSAR models for predicting the biological activity of Tipranavir analogs for HIV protease inhibition.J Mol Graph Model. 2010 Jun;28(8):852-62. doi: 10.1016/j.jmgm.2010.03.005. Epub 2010 Mar 24. J Mol Graph Model. 2010. PMID: 20399695 Free PMC article.
-
QSAR study on maximal inhibition (Imax) of quaternary ammonium antagonists for S-(-)-nicotine-evoked dopamine release from dopaminergic nerve terminals in rat striatum.Bioorg Med Chem. 2009 Jul 1;17(13):4477-85. doi: 10.1016/j.bmc.2009.05.010. Epub 2009 May 8. Bioorg Med Chem. 2009. PMID: 19477134 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous