Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov;71(11):2759-65.
doi: 10.1271/bbb.70362. Epub 2007 Nov 7.

Chloroplast-like organelles were found in enucleate sieve elements of transgenic plants overexpressing a proteinase inhibitor

Affiliations
Free article

Chloroplast-like organelles were found in enucleate sieve elements of transgenic plants overexpressing a proteinase inhibitor

Jun Xie et al. Biosci Biotechnol Biochem. 2007 Nov.
Free article

Abstract

SaPIN2a, a plant proteinase inhibitor from nightshade (Solanum americanum), was located to the enucleate sieve elements (SEs) of phloem. The expressed SaPIN2a in transgenic lettuce showed inhibition of plant endogenous trypsin- and chymotrypsin-like activities, suggesting that SaPIN2a can regulate proteolysis in plant cells. To further investigate the physiological role of SaPIN2a, we produced transgenic nightshade and lettuce plants overexpressing SaPIN2a from the cauliflower mosaic virus (CaMV) 35S promoter using Agrobacterium-mediated transformation. Overexpression of SaPIN2a in transgenic plants was demonstrated by northern blot and western blot analysis. SaPIN2a-overexpressing transgenic nightshade plants showed significantly lower height than wild-type plants. Transmission electron microscopy analysis showed that chloroplast-like organelles with thylakoids, which are not present in enucleate SEs of wild-type plants, were present in the enucleate SEs of SaPIN2a-overexpressing transgenic plants. This finding is discussed in terms of the possible role played by SaPIN2a in the regulation of proteolysis in SEs.

PubMed Disclaimer

Publication types

MeSH terms

Substances