Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Apr;23(4):527-35.
doi: 10.1007/s00467-007-0594-z. Epub 2007 Nov 7.

Muscle wasting in chronic kidney disease: the role of the ubiquitin proteasome system and its clinical impact

Affiliations
Review

Muscle wasting in chronic kidney disease: the role of the ubiquitin proteasome system and its clinical impact

Vik R Rajan et al. Pediatr Nephrol. 2008 Apr.

Abstract

Muscle wasting in chronic kidney disease (CKD) and other catabolic diseases (e.g. sepsis, diabetes, cancer) can occur despite adequate nutritional intake. It is now known that complications of these various disorders, including acidosis, insulin resistance, inflammation, and increased glucocorticoid and angiotensin II production, all activate the ubiquitin-proteasome system (UPS) to degrade muscle proteins. The initial step in this process is activation of caspase-3 to cleave the myofibril into its components (actin, myosin, troponin, and tropomyosin). Caspase-3 is required because the UPS minimally degrades the myofibril but rapidly degrades its component proteins. Caspase-3 activity is easily detected because it leaves a characteristic 14kD actin fragment in muscle samples. Preliminary evidence from several experimental models of catabolic diseases, as well as from studies in patients, indicates that this fragment could be a useful biomarker because it correlates well with the degree of muscle degradation in dialysis patients and in other catabolic conditions.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
The ubiquitin–proteasome pathway of protein degradation. Ubiquitin (Ub) is conjugated to proteins destined for degradation by an ATP-dependent process that involves three enzymes (E1–E3). A chain of five Ub molecules attached to the protein substrate is recognized by the 26S proteasome, which removes Ub and digests the protein into peptides. The peptides are degraded to amino acids by peptidases in the cytoplasm or used in antigen presentation. (Reproduced with permission from [15])
Fig. 2
Fig. 2
The balance between muscle hypertrophy and atrophy depends on whether protein synthesis is more active than degradation or vice versa. In protein synthesis, insulin-like growth factor (IGF)-1 and insulin signaling leads to increased phosphatidylinositol 3-kinase (PI3K), which promotes Akt phosphorylation (Akt-P). Akt-P promotes phosphorylation of GSK1 and mTOR/S6 kinases, leading to increased protein synthesis. Akt-P also phosphorylates the forkhead (FoxO) transcription factor, preventing it from entering the nucleus to promote expression of atrogin-1, MuRF-1, and other atrogenes, thereby blocking protein degradation. In protein degradation, the opposite pathway happens, but additionally, decreased Akt-P leads to increased caspase-3 activity, further promoting degradation. In inflammation, it is thought that tumor necrosis factor (TNF)-α and other inflammatory cytokines phosphorylate the inhibitor of nuclear factor (NF)-κB (IκB), to free NF-B to enter the nucleus and promote MuRF-1 expression, and ultimately, muscle protein degradation. (Reproduced with permission from [15])

References

    1. Qureshi AR, Alvestrand A, Danielsson A, Divino-Filho JC, Gutierrez A, Lindholm B, Bergstrom J. Factors predicting malnutrition in hemodialysis patients: A cross-sectional study. Kidney Int. 1998;53:773–782. - PubMed
    1. Kopple JD. National Kidney Foundation K/DOQI clinical practice guidelines for nutrition in chronic renal failure. Am J Kidney Dis. 2001;37:S66–S70. - PubMed
    1. Mitch WE. Malnutrition: a frequent misdiagnosis for hemodialysis patients. J Clin Invest. 2002;110:437–439. - PMC - PubMed
    1. Kaysen GA, Dubin JA, Muller H-G, Rosales L, Levin NW, Mitch WE. Inflammation and reduced albumin synthesis associated with stable decline in serum albumin in hemodialysis patients. Kidney Int. 2004;65:1408–1415. - PubMed
    1. Bailey JL, Wang X, England BK, Price SR, Ding X, Mitch WE. The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent, ubiquitin-proteasome pathway. J Clin Invest. 1996;97:1447–1453. - PMC - PubMed

Publication types

MeSH terms