Prostaglandins increase trabecular meshwork outflow facility in cultured human anterior segments
- PMID: 17988642
- PMCID: PMC2745953
- DOI: 10.1016/j.ajo.2007.09.001
Prostaglandins increase trabecular meshwork outflow facility in cultured human anterior segments
Abstract
Purpose: To determine the effect of latanoprost free acid and prostaglandin E1 (PGE1) on outflow facility in cultured human anterior segments. Clinical studies find prostaglandin treatment increases uveoscleral outflow, but do not agree whether trabecular outflow increases. Cultured anterior segments eliminate the uveoscleral pathway and enable a direct assessment of trabecular outflow.
Design: Laboratory investigation.
Methods: One anterior segment of an eye pair was placed in perfusion organ culture and received a continuous infusion of drug while the fellow anterior segment received vehicle. Histologic changes were assessed. Zymography and Western blots were used to analyze matrix metalloprotease (MMP) activity. Scleral hydraulic conductivities were measured.
Results: Latanoprost significantly increased outflow facility (67% +/- 11% vs control 6% +/- 10%, P < .001). Facility changes occurred within one hour of receiving drug, reaching a new baseline by 24 hours. Facility changes were reversible, requiring about 48 hours to return to pre-drug values. PGE1 caused less facility change (13% +/- 17% vs control 1% +/- 11%, P = .02). Prostaglandin treated anterior segments had regions of focal detachment and loss of Schlemm canal endothelial cells, with loss of extracellular matrix underlying some areas. MMPs were not consistently increased in Western blots, zymography, or immunohistochemistry. Scleral hydraulic conductivity increased, but not enough to account for total facility increase.
Conclusions: Prostaglandins increase outflow facility in perfusion organ culture of human anterior segments. MMP activity was not consistently increased, and scleral hydraulic conductivity was not increased sufficiently to account for total facility increase. The histologic changes suggest a direct trabecular meshwork effect.
Figures
References
-
- Weinreb RN, Kashiwagi K, Kashiwagi F, Tsukahara S, Lindsey JD. Prostaglandins increase matrix metalloproteinase release from human ciliary smooth muscle cells. Invest Ophthalmol Vis Sci. 1997;38:2772–2780. - PubMed
-
- Weinreb RN, Lindsey JD, Marchenko G, Marchenko N, Angert M, Strongin A. Prostaglandin FP agonists alter metalloproteinase gene expression in sclera. Invest Ophthalmol Vis Sci. 2004;45:4368–4377. - PubMed
-
- Noecker RS, Dirks MS, Choplin NT, Bernstein P, Batoosingh AL, Whitcup SM. A six-month randomized clinical trial comparing the intraocular pressure-lowering efficacy of bimatoprost and latanoprost in patients with ocular hypertension or glaucoma. Am J Ophthalmol. 2003;135:55–63. - PubMed
-
- Parrish RK, Palmberg P, Sheu WP XLT Study Group. A comparison of latanoprost, bimatoprost, and travoprost in patients with elevated intraocular pressure: a 12-week, randomized, masked-evaluator multicenter study. Am J Ophthalmol. 2003;135:688–703. - PubMed
-
- Christiansen GA, Nau CB, McLaren JW, Johnson DH. Mechanism of ocular hypotensive action of bimatoprost (Lumigan) in patients with ocular hypertension or glaucoma. Ophthalmology. 2004;111:1658–1662. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
