Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep;28(9):2080-4.

[Study on phytoremediation of phenanthrene-contaminated soil with alfalfa (Medicago sativa L.)]

[Article in Chinese]
Affiliations
  • PMID: 17990561

[Study on phytoremediation of phenanthrene-contaminated soil with alfalfa (Medicago sativa L.)]

[Article in Chinese]
Shu-xiu Fan et al. Huan Jing Ke Xue. 2007 Sep.

Abstract

Pot experiment was used to investigate phytoremediation of phenanthrene-contaminated soil with alfalfa (Medicago sativa L.). Results indicated that phenanthrene had inhibitive effect on alfalfa growth, and higher phenanthrene concentration seriously prevent alfalfa growth. When the concentration was 445.22 mg/kg, the shoot and root biomasses were only 57.31% and 31.20% of control respectively. Alfalfa significantly promoted phenanthrene degradation in the soil. After 60 days, 85.68%-91.40% and 75.25%-86.61% of spiked phenanthrene disappeared from the rhizosphere and non-rhizosphere soils respectively. And the average removal ratio of phenanthrene in rhizosphere soils was 6.33% higher than that in non-rhizoshpere soils. The residual concentration of phenanthrene in the rhizosphere was lower than that in the non-rhizosphere but the dehydrogenase activity was on the contrary. With phenanthrene concentration increase the removal ratio and dehydrogenase activity decreased. A positive correlation was observed between the soil dehydrogenase activity and the removal ratio of phenanthrene in both the rhizosphere and non-rhizosphere soils. Therefore the presence of alfalfa roots was effective in promoting the phytoremediation of phenanthrene.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms