Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1977;21(3):222-31.
doi: 10.1111/j.1399-6576.1977.tb01213.x.

The cerebrovascular CO2 reactivity during the acute phase of brain injury

Comparative Study

The cerebrovascular CO2 reactivity during the acute phase of brain injury

G E Cold et al. Acta Anaesthesiol Scand. 1977.

Abstract

Using the intra-arterial 133xenon (133Xe) method, the cerebrovascular response to acute Paco2 reduction was studied in 26 unconscious, brain-injured patients subjected to controlled ventilation. The CO2 reactivity was calculated as delta in CBF/delta Paco2. The perfusion pressure was defined as the difference between mean arterial pressure and mean intraventricular pressure. Although the CO2 reactivities did not differ significantly from that in awake, normocapnic subjects, it was low in the acute phase of injury, especially in those patients with severe outcome in whom the brain-stem reflexes were often affected. An increase of the CO2 reactivity with time was observed, indicating normal response after 1-2 weeks. Chronic hypocapnia in six unconscious patients resulted in sustained CSF pH adaptation. The question whether a delay in CSF pH adapation exerts an influence on the CO2 reactivity, and the influence of cerebral lactacidosis on the CO2 response are discussed.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources