Zeaxanthin radical cation formation in minor light-harvesting complexes of higher plant antenna
- PMID: 17991753
- DOI: 10.1074/jbc.M705645200
Zeaxanthin radical cation formation in minor light-harvesting complexes of higher plant antenna
Abstract
Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880-1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5% of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N) <==> LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.
Similar articles
-
Properties of zeaxanthin and its radical cation bound to the minor light-harvesting complexes CP24, CP26 and CP29.Biochim Biophys Acta. 2009 Jun;1787(6):747-52. doi: 10.1016/j.bbabio.2009.02.006. Epub 2009 Feb 24. Biochim Biophys Acta. 2009. PMID: 19248759
-
Snapshot Transient Absorption Spectroscopy of Carotenoid Radical Cations in High-Light-Acclimating Thylakoid Membranes.J Phys Chem Lett. 2017 Nov 16;8(22):5548-5554. doi: 10.1021/acs.jpclett.7b02486. Epub 2017 Nov 2. J Phys Chem Lett. 2017. PMID: 29083901
-
A novel method produces native light-harvesting complex II aggregates from the photosynthetic membrane revealing their role in nonphotochemical quenching.J Biol Chem. 2020 Dec 18;295(51):17816-17826. doi: 10.1074/jbc.RA120.016181. J Biol Chem. 2020. PMID: 33454016 Free PMC article.
-
Quantum chemical insights in energy dissipation and carotenoid radical cation formation in light harvesting complexes.Phys Chem Chem Phys. 2007 Jun 21;9(23):2917-31. doi: 10.1039/b703028b. Epub 2007 Apr 25. Phys Chem Chem Phys. 2007. PMID: 17551615 Review.
-
Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids.Biochim Biophys Acta. 2009 Jan;1787(1):3-14. doi: 10.1016/j.bbabio.2008.09.013. Epub 2008 Oct 11. Biochim Biophys Acta. 2009. PMID: 18976630 Review.
Cited by
-
Direct interaction of the major light-harvesting complex II and PsbS in nonphotochemical quenching.Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5452-6. doi: 10.1073/pnas.1205561110. Epub 2013 Mar 18. Proc Natl Acad Sci U S A. 2013. PMID: 23509270 Free PMC article.
-
Fluorescence lifetime snapshots reveal two rapidly reversible mechanisms of photoprotection in live cells of Chlamydomonas reinhardtii.Proc Natl Acad Sci U S A. 2012 May 29;109(22):8405-10. doi: 10.1073/pnas.1205303109. Epub 2012 May 14. Proc Natl Acad Sci U S A. 2012. PMID: 22586081 Free PMC article.
-
Site-directed spin-labeling study of the light-harvesting complex CP29.Biophys J. 2009 May 6;96(9):3620-8. doi: 10.1016/j.bpj.2009.01.038. Biophys J. 2009. PMID: 19413967 Free PMC article.
-
Xanthophyll cycle--a mechanism protecting plants against oxidative stress.Redox Rep. 2011;16(2):78-90. doi: 10.1179/174329211X13020951739938. Redox Rep. 2011. PMID: 21722416 Free PMC article.
-
Exploring the structure of the N-terminal domain of CP29 with ultrafast fluorescence spectroscopy.Eur Biophys J. 2010 Mar;39(4):631-8. doi: 10.1007/s00249-009-0519-9. Epub 2009 Jul 29. Eur Biophys J. 2010. PMID: 19639311 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases