Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Jan-Feb;14(1):213-30.
doi: 10.1109/TVCG.2007.1054.

On linear variational surface deformation methods

Affiliations
Review

On linear variational surface deformation methods

Mario Botsch et al. IEEE Trans Vis Comput Graph. 2008 Jan-Feb.

Abstract

This survey reviews the recent advances in linear variational mesh deformation techniques. These methods were developed for editing detailed high-resolution meshes, like those produced by scanning real-world objects. The challenge of manipulating such complex surfaces is three-fold: the deformation technique has to be sufficiently fast, robust, and intuitive and easy to control to be useful for interactive applications. An intuitive, and thus predictable, deformation tool should provide physically plausible and aesthetically pleasing surface deformations, which in particular requires its geometric details to be preserved. The methods we survey generally formulate surface deformation as a global variational optimization problem that addresses the differential properties of the edited surface. Efficiency and robustness are achieved by linearizing the underlying objective functional, such that the global optimization amounts to solving a sparse linear system of equations. We review the different deformation energies and detail preservation techniques that were proposed in the recent years, together with the various techniques to rectify the linearization artifacts. Our goal is to provide the reader with a systematic classification and comparative description of the different techniques, revealing the strengths and weaknesses of each approach in common editing scenarios.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms