Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Dec 5;129(48):14946-51.
doi: 10.1021/ja0745613. Epub 2007 Nov 10.

Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide

Affiliations

Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide

Bernd Grohe et al. J Am Chem Soc. .

Abstract

Mineral-associated proteins have been proposed to regulate many aspects of biomineralization, including the location, type, orientation, shape, and texture of crystals. To understand how proteins achieve this exquisite level of control, we are studying the interaction between the phosphoprotein osteopontin (OPN) and the biomineral calcium oxalate monohydrate (COM). In the present study, we have synthesized peptides corresponding to amino acids 220-235 of rat bone OPN (pSHEpSTEQSDAIDpSAEK), one of several highly phosphorylated, aspartic-, and glutamic acid-rich sequences found in the protein. To investigate the role of phosphorylation in interaction with crystals, peptides containing no (P0), one (P1), or all three (P3) phosphates were prepared. Using a novel combination of confocal microscopy and scanning electron microscopy, we show that these peptides adsorb preferentially to {100} faces of COM and inhibit growth of these faces in a phosphorylation-dependent manner. To characterize the mechanism of adsorption of OPN peptides to COM, we have performed the first atomic-scale molecular-dynamics simulation of a protein-crystal interaction. P3 adsorbs to the {100} face much more rapidly than P1, which in turn adsorbs more rapidly than P0. In all cases, aspartic and glutamic acid, not phosphoserine, are the amino acids in closest contact with the crystal surface. These studies have identified a COM face-specific adsorption motif in OPN and delineated separate roles for carboxylate and phosphate groups in inhibition of crystal growth by mineral-associated phosphoproteins. We propose that the formation of close-range, stable, and face-specific interactions is a key factor in the ability of phosphoproteins to regulate biomineralization processes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources