Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2008 Feb 1;111(3):1044-53.
doi: 10.1182/blood-2007-04-084293. Epub 2007 Nov 13.

Outcomes in CCG-2961, a children's oncology group phase 3 trial for untreated pediatric acute myeloid leukemia: a report from the children's oncology group

Affiliations
Clinical Trial

Outcomes in CCG-2961, a children's oncology group phase 3 trial for untreated pediatric acute myeloid leukemia: a report from the children's oncology group

Beverly J Lange et al. Blood. .

Abstract

CCG-2961 incorporated 3 new agents, idarubicin, fludarabine and interleukin-2, into a phase 3 AML trial using intensive-timing remission induction/consolidation and related donor marrow transplantation or high-dose cytarabine intensification. Among 901 patients under age 21 years, 5-year survival was 52%, and event-free survival was 42%. Survival improved from 44% between 1996 and 1998 to 58% between 2000 and 2002 (P = .005), and treatment-related mortality declined from 19% to 12% (P = .025). Partial replacement of daunomycin with idarubicin in the 5-drug induction combination achieved a remission rate of 88%, similar to historical controls. Postremission survival was 56% in patients randomized to either 5-drug reinduction or fludarabine/cytarabine/idarubicin. For patients with or without a related donor, respective 5-year disease-free survival was 61% and 50% (P = .021); respective survival was 68% and 62% (P = .425). Donor availability conferred no benefit on those with inv(16) or t(8;21) cytogenetics. After cytarabine intensification, patients randomized to interleukin-2 or none experienced similar outcomes. Factors predictive of inferior survival were age more than 16 years, non-white ethnicity, absence of related donor, obesity, white blood cell count more than 100 000 x 10(9)/L, -7/7q-, -5/5q-, and/or complex karyotype. No new agent improved outcomes; experience may have contributed to better results time.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Course 1 and Course 2: IdaDCTER is idarubicin 5 mg/m2 per day infused more than half an hour daily, cytarabine 200 mg/m2 /day and etoposide 100 mg/m2 per day both as continuous 96-hour infusions (CI), oral thioguanine 100 mg/m2 per day, and dexamethasone 6 mg/m2on days 0 to 3. On days 10 to 13, daunorubicin 20 mg/m2 day CI replaces idarubicin. Course 2: FAMP is fludarabine monophosphate, 10.5 mg/m2 loading dose, then 30.5 mg/m2 per 24 hours for a total of 48 hours, followed by beginning Ara-C 390 mg/m2 loading dose and 2400 mg/m2 per 24 hours continuous infusion for 72 hours and idarubicin 12 mg/m2 per day infused more than half an hour on days 0, 1, and 2 at 12.0 mg/m2 per day. G-CSF, 5 μg/kg per day, initiated in patients with less than 5% residual leukemic blasts in day 14 ± 1 marrow and continued until neutrophil recovery. HidAC is cytarabine 3 g/m2 as 3-hour infusions at hours 0 to 3, 12 to 15, 24 to 27, and 36 to 39 on days 0 and 7 followed by Escherichia coli L-asparaginase 6000 units/m2 intramuscularly at hour 42 given on days 1 and 8. Marrow transplantation cytoreduction consists of 16 doses of busulfan at 40 mg/m2 orally every 6 hours on days −9, −8, −7, and −6 and cyclophosphamide 50 mg/kg IV more than one hour on days −5,−4,−3, and −2; interleukin-2 is 9 × 106 IU/m2 per day CI day 0 to 3 and 1.6 × 106 IU/m2 per day on CI days 8 to 17. Central nervous system prophylaxis was intrathecal cytarabine on days 0 and 10 of course 1 and course 2 regimen A and weekly times 3 following recovering of counts after HidAC., In courses 1 and 2, G-CSF, 5 μg/m2 per day was started 48 hours after completion of chemotherapy and continued until the neutrophil count was more than 1500 × 109/L.
Figure 2
Figure 2
Event-free survival and overall survival in CCG-2961. Kaplan-Meier plot of survival (OS) and event-free survival (EFS) from time on study.
Figure 3
Figure 3
Outcomes in CCG-2961 according to donor availability. (A) Kaplan-Meier plot of OS and disease-free survival (DFS) from the time of entry to course 3 for those with and without matched related donors for marrow transplantation. (B) OS and DFS for those patients with favorable cytogenetics according to donor status.
Figure 4
Figure 4
Kaplan-Meier plot of OS according to time of study entry.

References

    1. Creutzig U, Zimmermann M, Ritter J, et al. Treatment strategies and long-term results in paediatric patients treated in four consecutive AML-BFM trials. Leukemia. 2005;19:2030–2042. - PubMed
    1. Gibson BE, Wheatley K, Hann IM, et al. Treatment strategy and long-term results in paediatric patients treated in consecutive UK AML trials. Leukemia. 2005;19:2130–2138. - PubMed
    1. Lie SO, Abrahamsson J, Clausen N, et al. Long-term results in children with AML: NOPHO-AML Study Group: report of three consecutive trials. Leukemia. 2005;19:2090–2100. - PubMed
    1. Entz-Werle N, Suciu S, van der Werff ten Bosch J, et al. Results of 58872 and 58921 trials in acute myeloblastic leukemia and relative value of chemotherapy vs allogeneic bone marrow transplantation in first complete remission: the EORTC Children Leukemia Group report. Leukemia. 2005;19:2072–2081. - PubMed
    1. Perel Y, Auvrignon A, Leblanc T, et al. Treatment of childhood acute myeloblastic leukemia: dose intensification improves outcome and maintenance therapy is of no benefit—multicenter studies of the French LAME (Leucemie Aigue Myeloblastique Enfant) Cooperative Group. Leukemia. 2005;19:2082–2089. - PubMed

Publication types

MeSH terms