A risk score for type 1 diabetes derived from autoantibody-positive participants in the diabetes prevention trial-type 1
- PMID: 18000175
- DOI: 10.2337/dc07-1459
A risk score for type 1 diabetes derived from autoantibody-positive participants in the diabetes prevention trial-type 1
Abstract
Objective: The accurate prediction of type 1 diabetes is essential for appropriately identifying prevention trial participants. Thus, we have developed a risk score for the prediction of type 1 diabetes.
Research design and methods: Diabetes Prevention Trial-Type 1 (DPT-1) participants, islet cell autoantibody (ICA)-positive relatives of type 1 diabetic patients (n = 670), were randomly divided into development and validation samples. Risk score values were calculated for the validation sample from development sample model coefficients obtained through forward stepwise proportional hazards regression.
Results: A risk score based on a model including log-BMI, age, log-fasting C-peptide, and postchallenge glucose and C-peptide sums from 2-h oral glucose tolerance tests (OGTTs) was derived from the development sample. The baseline risk score strongly predicted type 1 diabetes in the validation sample (chi(2) = 82.3, P < 0.001). Its strength of prediction was almost the same (chi(2) = 83.3) as a risk score additionally dependent on a decreased first-phase insulin response variable from intravenous glucose tolerance tests (IVGTTs). Biochemical autoantibodies did not contribute significantly to the risk score model. A final type 1 diabetes risk score was then derived from all participants with the same variables as those in the development sample model. The change in the type 1 diabetes risk score from baseline to 1 year was in itself also highly predictive of type 1 diabetes (P < 0.001).
Conclusions: A risk score based on age, BMI, and OGTT indexes, without dependence on IVGTTs or additional autoantibodies, appears to accurately predict type 1 diabetes in ICA-positive relatives.
Comment in
-
Should we screen for risk of type 1 diabetes?Diabetes Care. 2008 Mar;31(3):622-3. doi: 10.2337/dc08-0023. Diabetes Care. 2008. PMID: 18308685 No abstract available.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous