Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007:2007:4251-4.
doi: 10.1109/IEMBS.2007.4353275.

Modeling human respiratory impedance in Hispanic asthmatic children

Affiliations

Modeling human respiratory impedance in Hispanic asthmatic children

E Meraz et al. Annu Int Conf IEEE Eng Med Biol Soc. 2007.

Abstract

Central (large airway) and peripheral (small airway) dysfunction frequently occur in patients with asthma and chronic obstructive lung disease. Measurement of the respiratory impedance can assist with diagnosis of pathological conditions. The forced Oscillation technique (FOT) superimposes small pressure perturbations at the mouth during tidal breathing of a subject to measure lung mechanical parameters. The Impulse Oscillometry System (IOS) is a commercial instrument that measures forced oscillatory impedance. IOS can be conveniently used in children as it only requires their passive cooperation during pulmonary function testing. Forced oscillatory impedance can be analyzed with respiratory system equivalent electrical circuit models. Models of varying complexity and fidelity have been developed to provide better understanding of respiratory mechanics and enable greater specificity of the diagnosis. Parameter estimates for these models can be used as reference values for detection and diagnosis of different respiratory pathologies. Previous work by our group has evaluated several known respiratory models and a new RIC model (augmented RIC) has emerged which offers advantages over earlier models. It has been shown that one parameter of this new model (representing peripheral airway compliance) is capable of discriminating between normal and asthmatic children. In this paper, we analyzed IOS data from 40 Hispanic asthmatic children and obtained sensitive impulse oscillometric parameters of lung function as well as parameter estimates for the augmented RIC (aRIC) model to distinguish between constricted (asthmatic condition) and non-constricted (non-asthmatic condition) airways with very promising results.

PubMed Disclaimer

Publication types

LinkOut - more resources