Channel and feature selection in multifunction myoelectric control
- PMID: 18003175
- DOI: 10.1109/IEMBS.2007.4353509
Channel and feature selection in multifunction myoelectric control
Abstract
Real time controlling devices based on myoelectric singles (MES) is one of the challenging research problems. This paper presents a new approach to reduce the computational cost of real time systems driven by Myoelectric signals (MES) (a.k.a Electromyography--EMG). The new approach evaluates the significance of feature/channel selection on MES pattern recognition. Particle Swarm Optimization (PSO), an evolutionary computational technique, is employed to search the feature/channel space for important subsets. These important subsets will be evaluated using a multilayer perceptron trained with back propagation neural network (BPNN). Practical results acquired from tests done on six subjects' datasets of MES signals measured in a noninvasive manner using surface electrodes are presented. It is proved that minimum error rates can be achieved by considering the correct combination of features/channels, thus providing a feasible system for practical implementation purpose for rehabilitation of patients.
Similar articles
-
A control system for a powered prosthesis using positional and myoelectric inputs from the shoulder complex.Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:6138-41. doi: 10.1109/IEMBS.2007.4353750. Annu Int Conf IEEE Eng Med Biol Soc. 2007. PMID: 18003416
-
EMG feature assessment for myoelectric pattern recognition and channel selection: a study with incomplete spinal cord injury.Med Eng Phys. 2014 Jul;36(7):975-80. doi: 10.1016/j.medengphy.2014.04.003. Epub 2014 May 17. Med Eng Phys. 2014. PMID: 24844608 Free PMC article.
-
A supervised feature projection for real-time multifunction myoelectric hand control.Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2417-20. doi: 10.1109/IEMBS.2006.259659. Conf Proc IEEE Eng Med Biol Soc. 2006. PMID: 17945714
-
The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges.IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):797-809. doi: 10.1109/TNSRE.2014.2305111. Epub 2014 Feb 11. IEEE Trans Neural Syst Rehabil Eng. 2014. PMID: 24760934 Review.
-
Surface electromyography signal processing and classification techniques.Sensors (Basel). 2013 Sep 17;13(9):12431-66. doi: 10.3390/s130912431. Sensors (Basel). 2013. PMID: 24048337 Free PMC article. Review.
Cited by
-
Evaluating EMG Feature and Classifier Selection for Application to Partial-Hand Prosthesis Control.Front Neurorobot. 2016 Oct 19;10:15. doi: 10.3389/fnbot.2016.00015. eCollection 2016. Front Neurorobot. 2016. PMID: 27807418 Free PMC article.
-
Reduce Surface Electromyography Channels for Gesture Recognition by Multitask Sparse Representation and Minimum Redundancy Maximum Relevance.J Healthc Eng. 2021 May 27;2021:9929684. doi: 10.1155/2021/9929684. eCollection 2021. J Healthc Eng. 2021. PMID: 34136113 Free PMC article.
-
Myoelectric control of prosthetic hands: state-of-the-art review.Med Devices (Auckl). 2016 Jul 27;9:247-55. doi: 10.2147/MDER.S91102. eCollection 2016. Med Devices (Auckl). 2016. PMID: 27555799 Free PMC article. Review.
-
Sign Language Recognition Using the Electromyographic Signal: A Systematic Literature Review.Sensors (Basel). 2023 Oct 9;23(19):8343. doi: 10.3390/s23198343. Sensors (Basel). 2023. PMID: 37837173 Free PMC article.
-
Hybrid soft computing systems for electromyographic signals analysis: a review.Biomed Eng Online. 2014 Feb 3;13:8. doi: 10.1186/1475-925X-13-8. Biomed Eng Online. 2014. PMID: 24490979 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Other Literature Sources
Miscellaneous