Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May 1;71(2):813-30.
doi: 10.1002/prot.21741.

Evolution of binding sites for zinc and calcium ions playing structural roles

Affiliations

Evolution of binding sites for zinc and calcium ions playing structural roles

James W Torrance et al. Proteins. .

Abstract

The geometry of metal coordination by proteins is well understood, but the evolution of metal binding sites has been less studied. Here we present a study on a small number of well-documented structural calcium and zinc binding sites, concerning how the geometry diverges between relatives, how often nonrelatives converge towards the same structure, and how often these metal binding sites are lost in the course of evolution. Both calcium and zinc binding site structure is observed to be conserved; structural differences between those atoms directly involved in metal binding in related proteins are typically less than 0.5 A root mean square deviation, even in distant relatives. Structural templates representing these conserved calcium and zinc binding sites were used to search the Protein Data Bank for cases where unrelated proteins have converged upon the same residue selection and geometry for metal binding. This allowed us to identify six "archetypal" metal binding site structures: two archetypal zinc binding sites, both of which had independently evolved on a large number of occasions, and four diverse archetypal calcium binding sites, where each had evolved independently on only a handful of occasions. We found that it was common for distant relatives of metal-binding proteins to lack metal-binding capacity. This occurred for 13 of the 18 metal binding sites we studied, even though in some of these cases the original metal had been classified as "essential for protein folding." For most of the calcium binding sites studied (seven out of eleven cases), the lack of metal binding in relatives was due to point mutation of the metal-binding residues, whilst for zinc binding sites, lack of metal binding in relatives always involved more extensive changes, with loss of secondary structural elements or loops around the binding site.

PubMed Disclaimer

Publication types

LinkOut - more resources