Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2008 Mar;104(5):1333-44.
doi: 10.1111/j.1471-4159.2007.05075.x. Epub 2007 Nov 14.

Dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1A-mediated phosphorylation of amyloid precursor protein: evidence for a functional link between Down syndrome and Alzheimer's disease

Affiliations
Free article
Comparative Study

Dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1A-mediated phosphorylation of amyloid precursor protein: evidence for a functional link between Down syndrome and Alzheimer's disease

Soo-Ryoon Ryoo et al. J Neurochem. 2008 Mar.
Free article

Abstract

Most individuals with Down Syndrome (DS) show an early-onset of Alzheimer's disease (AD), which potentially results from the presence of an extra copy of a segment of chromosome 21. Located on chromosome 21 are the genes that encode beta-amyloid (Abeta) precursor protein (APP ), a key protein involved in the pathogenesis of AD, and dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1A (DYRK1A ), a proline-directed protein kinase that plays a critical role in neurodevelopment. Here, we describe a potential mechanism for the regulation of AD pathology in DS brains by DYRK1A-mediated phosphorylation of APP. We show that APP is phosphorylated at Thr668 by DYRK1A in vitro and in mammalian cells. The amounts of phospho-APP and Abeta are increased in the brains of transgenic mice that over-express the human DYRK1A protein. Furthermore, we show that the amounts of phospho-APP as well as those of APP and DYRK1A are elevated in human DS brains. Taken together, these results reveal a potential regulatory link between APP and DYRK1A in DS brains, and suggest that the over-expression of DYRK1A in DS may play a role in accelerating AD pathogenesis through phosphorylation of APP.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources